
ZOO-Project Documentation
Release 1.8

ZOO-Project team

September 06, 2019

CONTENTS

1 Introduction 1
1.1 What is ZOO-Project ? . 1
1.2 ZOO-Project components . 1
1.3 Open Source . 2

2 ZOO-Project installation 3
2.1 Prerequisites . 3
2.2 Download . 4
2.3 Installation on Unix/Linux . 5
2.4 Installation on Debian / Ubuntu . 12
2.5 Install on OpenSUSE . 14
2.6 Installation on CentOS . 15
2.7 Installation on Windows ™ . 15

3 ZOO-Kernel 23
3.1 What is ZOO-Kernel ? . 23
3.2 ZOO-Kernel configuration . 25
3.3 Optional MapServer support . 32
3.4 Optional Orfeo Toolbox support . 38
3.5 Optional SAGA GIS support . 40
3.6 Optional HPC support . 42

4 ZOO-Services 47
4.1 What are ZOO-Services ? . 47
4.2 ZOO-Service configuration file . 47
4.3 Process profiles registry . 52
4.4 Create your own ZOO-Services . 56
4.5 Translation Support . 65
4.6 ZOO Status Service . 67
4.7 Debugging ZOO Services . 67
4.8 Available ZOO-Services . 69

5 ZOO-API 73
5.1 What is ZOO-API ? . 73
5.2 Using ZOO-API . 73
5.3 ZOO-API Classes . 74
5.4 Examples . 80

6 ZOO-Client 83
6.1 What is ZOO-Client ? . 83
6.2 Using ZOO-Client . 85

i

6.3 Example application . 87

7 Contributor Guide 91
7.1 How to contribute ? . 91
7.2 Contribute code . 92
7.3 Contribute documentation . 94
7.4 Committer guidelines . 97
7.5 Release Procedure . 99
7.6 Contribute translation . 100
7.7 List of contributors . 102

ii

CHAPTER

ONE

INTRODUCTION

This is an introduction to the ZOO-Project1 open source software documentation.

1.1 What is ZOO-Project ?

ZOO-Project2 is a WPS (Web Processing Service) implementation written in C, Python and JavaScript. It is
an open source platform which implements the WPS 1.0.03 and WPS 2.0.04 standards edited by the Open
Geospatial Consortium5 (OGC).

ZOO-Project6 provides a developer-friendly framework for creating and chaining WPS compliant Web Ser-
vices. Its main goal is to provide generic and standard-compliant methods for using existing open source
librairies and algorithms as WPS. It also offers efficient tools for creating new innovative web services and
applications.

ZOO-Project7 is able to process geospatial or non geospatial data online. Its core processing engine (aka
ZOO-Kernel) lets you execute a number of existing ZOO-Services based on reliable software and libraries.
It also gives you the ability to create your own WPS Services from new or existing source code, which can
be written in seven different programming languages. That lets you compose or turn code as WPS Services
simply, with straightforward configuration and standard coding methods.

ZOO-Project8 is very flexible with data input and output so you can process almost any kind of data stored
locally or accessed from remote servers and databases. ZOO-Project excels in data processing and integrates
new or existing spatial data infrastructures, as it is able to communicate with map servers and can integrate
webmapping clients.

1.2 ZOO-Project components

The ZOO-Project9 platform is made up of the following components:

• ZOO-Kernel: A WPS compliant implementation written in C offering a powerful WPS server able
to manage and chain WPS services. by loading dynamic libraries and code written in different lan-
guages.

1http://zoo-project.org
2http://zoo-project.org
3http://www.opengeospatial.org/standards/wps/
4http://www.opengeospatial.org/standards/wps/
5http://www.opengeospatial.org/
6http://zoo-project.org
7http://zoo-project.org
8http://zoo-project.org
9http://zoo-project.org

1

http://zoo-project.org
http://zoo-project.org
http://www.opengeospatial.org/standards/wps/
http://www.opengeospatial.org/standards/wps/
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://zoo-project.org
http://zoo-project.org
http://zoo-project.org
http://zoo-project.org

ZOO-Project Documentation, Release 1.8

• ZOO-Services: A growing collection of ready to use Web Processing Services built on top of reliable
open source libraries such as GDAL, GRASS GIS, OrfeoToolbox, CGAL and SAGA GIS.

• ZOO-API: A server-side JavaScript API for creating, chaining and orchestrating the available WPS
Services.

• ZOO-Client: A client side JavaScript API for interacting with WPS servers and executing standard
requests from web applications.

1.3 Open Source

ZOO-Project10 is open source and released under the terms of the MIT/X-1111 license12 . ZOO-Project
activities are directed by the Project Steering Committee (PSC) and the software itself is being developed,
maintained and documented by an international community of users and developers (aka ZOO-Tribe13).

Please refer to the ZOO-Project Contributor Guide if you want to participate and contribute. It is easy to get
involved on source code, documentation or translation. Everybody is welcome to join the ZOO-Tribe14.

ZOO-Project15 is an incubating software at the Open Source Geospatial Foundation (OSGeo16).

10http://zoo-project.org
11http://opensource.org/licenses/MITlicense
12http://zoo-project.org/trac/browser/trunk/zoo-project/LICENSE
13http://zoo-project.org/new/ZOO-Project/ZOO%20Tribe
14http://zoo-project.org/new/ZOO-Project/ZOO%20Tribe/
15http://zoo-project.org
16http://osgeo.org

2 Chapter 1. Introduction

http://zoo-project.org
http://opensource.org/licenses/MITlicense
http://zoo-project.org/trac/browser/trunk/zoo-project/LICENSE
http://zoo-project.org/new/ZOO-Project/ZOO%20Tribe
http://zoo-project.org/new/ZOO-Project/ZOO%20Tribe/
http://zoo-project.org
http://osgeo.org

CHAPTER

TWO

ZOO-PROJECT INSTALLATION

The following sections will help you to install the ZOO-Project1 Open WPS Platform on various operating
systems.

2.1 Prerequisites

2.1.1 Mandatory

The following libraries are required to install ZOO-Kernel. Please make sure they are available on your
system before anything else.

• autoconf (http://www.gnu.org/software/autoconf/)

• gettext (https://www.gnu.org/software/gettext/)

• cURL (http://curl.haxx.se)

• FastCGI (http://www.fastcgi.com)

• Flex & Bison (http://flex.sourceforge.net/ | http://www.gnu.org/software/bison/)

• libxml2 (http://xmlsoft.org)

• OpenSSL (http://www.openssl.org)

• GDAL (http://gdal.org/)

Warning: It is mandatory to install every library listed above before compiling and installing
ZOO-Kernel

2.1.2 Optional

You may also consider the following optional libraries:

• MapServer (for ZOO-Kernel optional WMS, WFS and WCS support) (http://mapserver.org)

• Python (http://www.python.org)

• PHP Embedded (for ZOO-Kernel optional PHP support) (http://www.php.net)

• Java SDK (for ZOO-Kernel optional Java support) (http://java.sun.com)

• SpiderMonkey (for ZOO-Kernel optional Javascript support) (http://www.mozilla.org/js/spidermonkey/
)

1http://zoo-project.org

3

http://zoo-project.org
http://www.gnu.org/software/autoconf/
https://www.gnu.org/software/gettext/
http://curl.haxx.se
http://www.fastcgi.com
http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://xmlsoft.org
http://www.openssl.org
http://gdal.org/
http://mapserver.org
http://www.python.org
http://www.php.net
http://java.sun.com
http://www.mozilla.org/js/spidermonkey/

ZOO-Project Documentation, Release 1.8

• SAGA GIS (for ZOO-Kernel optional SAGA support) (http://www.saga-gis.org/en/index.html/)

• OrfeoToolbox (for ZOO-Kernel optional OTB support) (https://www.orfeo-toolbox.org/)

• GRASS GIS (for using it through WPSGrassBridge) (http://grass.osgeo.org)

• PostgreSQL support activated in GDAL to Use a Database Backend (Optional)

2.2 Download

Several ways to download the ZOO-Project2 source code are available and explained in this section.

Warning: The ZOO-Project svn is the place where developement happens. Checking out svn is the best
way to be always up-to-date.

2.2.1 ZOO-Project releases archives

Each new ZOO-Project3 major release are available on the project official website as .zip and .tar.bz2
archives. Head to the Downloads4 section to get the latest or older ZOO-Project releases.

Warning: Don’t use older versions of ZOO-Project if you want to use new features and avoid older
code issues. Prefer svn or github instead.

2.2.2 ZOO-Project SVN

Download the latest5 ZOO-Project6 source code using the following svn command:

svn checkout http://svn.zoo-project.org/svn/trunk zoo-src

Registered ZOO-Project developers would prefer the following:

sed "s:\[tunnels\]:\[tunnels\]\nzoosvn = /usr/bin/ssh -p 1046:g" -i ~/.subversion/config
svn co svn+zoosvn://svn.zoo-project.org/var/svn/repos/trunk zoo-src

Note: The ZOO-Project svn server listens on the 1046 (1024+22) port (instead of 22 by default), so please
use a specific tunnel to access the svn server, as shown in the command above.

2.2.3 ZOO-Project Github

The ZOO-Project svn is mirrored in this Github repository7 in case you would like to fork it.

2http://zoo-project.org
3http://zoo-project.org
4http://zoo-project.org/site/Downloads
5http://zoo-project.org/trac/browser/trunk
6http://zoo-project.org
7https://github.com/kalxas/zoo-project/

4 Chapter 2. ZOO-Project installation

http://www.saga-gis.org/en/index.html/
https://www.orfeo-toolbox.org/
http://grass.osgeo.org
http://zoo-project.org
http://zoo-project.org
http://zoo-project.org/site/Downloads
http://zoo-project.org/trac/browser/trunk
http://zoo-project.org
https://github.com/kalxas/zoo-project/

ZOO-Project Documentation, Release 1.8

2.3 Installation on Unix/Linux

To build and install ZOO-Project on your Web Server you will need 4 steps :

• Build cgic
• Install ZOO-Kernel
• Install ZOO-Services
• Testing your installation

2.3.1 Build cgic

Run the following commands from the thirds/cgic directory to build the cgic library.

cd thirds/cgic
make

The cgic library originaly come from http://www.boutell.com/cgic.

Warning: You may need to edit the Makefile in case you are using a 64 bits platform for building and
your fcgi library is not located in /usr/lib64.

2.3.2 Install ZOO-Kernel

For the impatient

Run the following commands from the directory where you Download and extracted the ZOO Kernel source
code in order to build the zoo_loader.cgi CGI program with default options.

cd zoo-project/zoo-kernel
autoconf
./configure
make
make install

This should produce executables for the zoo_loader.cgi CGI program (located per default
in /usr/lib/cgi-bin/) and a shared library libzoo_service (located per default in
/usr/local/lib).

Warning: Edit ZOO-Kernel installation settings in the main.cfg file (set tmpPath and tmpUrl to fit
your web server configuration).

Configure options

This section provides information on ZOO-Kernel configure options. It is recommanded to also read the
ZOO-Kernel configuration section for configuration technical details.

Here is the list of available options in the same order as returned by ./configure --help command:

2.3. Installation on Unix/Linux 5

http://www.boutell.com/cgic

ZOO-Project Documentation, Release 1.8

• Specific CGI Directory
• Specific main.cfg location (Optional)
• Use a Database Backend (Optional)
• Metadata Database (Optional)
• YAML Support (Optional)
• FastCGI Support (Required)
• GDAL Support (Required)
• GEOS Support (Optional)
• CGAL Support (Optional)
• MapServer Support (Optional)
• XML2 Support (Required)
• OGC API - Processing Support (Optional)
• Python Support (Optional)

– Python Version
• JavaScript Support (Optional)
• PHP Support (Optional)
• Java Support (Optional)
• Perl Support (Optional)
• Orfeo Toolbox Support (Optional)
• SAGA GIS Support (Optional)
• Translation support (Optional)

Specific CGI Directory

In the case your cgi-bin is not located in /usr/lib/ as it is assumed per default, then you can specify a
specific target location by using the following option:

./configure --with-cgi-dir=/Lbrary/WebServer/CGI-Executables

This way, when you will run the make install command, the ZOO-Kernel will be deployed in the spec-
ified directory (so, /Lbrary/WebServer/CGI-Executables‘ in this example).

Specific main.cfg location (Optional)

Per default, the ZOO-Kernel search for the main.cfg file from its installation directory but, in case you
want to store this file in another place, then you can use the --with-etc-dir option so it will search for
the main.cfg file in the sysconfdir directory.

For instance, you can define that the directory to store the main.cfg file is the /etc/zoo-project direc-
tory, by using the following command:

./configure --with-etc-dir=yes --sysconfdir=/etc/zoo-project

Use a Database Backend (Optional)

If you want to share the ongoing informations of running services between various ZOO-Kernel instances
then you should use this option: --with-db-backend. This way, both the GetStatus, GetResult and Dis-
miss requests can be run from any host accessing the same database. Obviously, this will require that the
ZOO-Kernel is able to access the Database server. To learn how to configure this connection and how to
create this database please refer to [1] and [2] respectively.

6 Chapter 2. ZOO-Project installation

ZOO-Project Documentation, Release 1.8

Note: By now, the ZOO-Kernel is not able to handle correctly the Dismiss request from any host. Never-
theless, it will provide valid response from any host, but only the host which is really handling the service
will be able to stop it and remove all the linked files.

To create a new database to be used by the ZOO-Kernel, you have to load the schema.sql8 file. For instance,
you may run the following:

createdb zoo_project
psql zoo_project -f zoo-project/zoo-kernel/sql/schema.sql

Note: You can choose another schema to store ZOO-Kernel specific informations. In such a case, you
would need to edit the schema.sql file to uncomment line 339 and 3410.

Metadata Database (Optional)

It is possible to use a PostgreSQL database to store metadata information about WPS Services. This support
is optional and require to be activated by using the --with-metadb=yes option.

To create the database for storing the metadata informations about the WPS Services, you may use the
following command:

createdb zoo_metadb
psql zoo_metadb -f zoo-project/zoo-kernel/sql/zoo_collectiondb.sql

In case you want to convert an existing zcfg file then, you can use the zcfg2sql tool from the command
line. It can be found in thirds/zcfg2sql and can be build simply by running the make command. After
compilation you only need to give it the path of the zcfg file you want to obtain the SQL queries required
to store the metadata informations in the database rather than in zcfg file.

For instance you may use the following command:

#Direct import in the zoo_metadb database
./zcfg2sql /Path/To/MyZCFGs/myService.zcfg | psql zoo_metadb
#Create a SQL file for a futur import
./zcfg2sql /Path/To/MyZCFGs/myService.zcfg > myService.sql

YAML Support (Optional)

If yaml.h file is not found in your /usr/include directory and libyaml.so is not found in /usr/lib,
a --with-yaml option can be used to specify its location. For instance, if the header file lies in
/usr/local/include and the shared library is located in /usr/local/lib, you may use the following
command:

$./configure --with-yaml=/usr/local

FastCGI Support (Required)

If your FastCGI library is not available in the default search path, a --with-fastcgi option can be
used to specify its location. For instance, if libfcgi.so lies in /usr/local/lib which is not in your

8http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel/sql/schema.sql
9http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel/sql/schema.sql#L33

10http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel/sql/schema.sql#L34

2.3. Installation on Unix/Linux 7

http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel/sql/schema.sql
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel/sql/schema.sql#L33
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel/sql/schema.sql#L34

ZOO-Project Documentation, Release 1.8

LD_SEARCH_PATH, you may use the following command:

$./configure --with-fastcgi=/usr/local

GDAL Support (Required)

If gdal-config program is not found in your PATH, a --with-gdal-config option can be used to specify
its location. For instance, if gdal-config lies in /usr/local/bin which is not in your PATH, you may
use the following command:

$./configure --with-gdal-config=/usr/local/bin/gdal-config

GEOS Support (Optional)

If geos-config program is not found in your PATH, a --with-geosconfig option can be used to specify
its location. For instance, if geos-config lies in /usr/local/bin which is not in your PATH, you may
use the following command:

$./configure --with-geosconfig=/usr/local/bin/geos-config

CGAL Support (Optional)

If CGAL/Delaunay_triangulation_2.h program is not found in your /usr/include direc-
tory, a --with-cgal option can be used to specify its location. For instance, if the file lies in
/usr/local/include which is not in your PATH, you may use the following command:

$./configure --with-cgal=/usr/local

MapServer Support (Optional)

In order to activate the WMS, WFS and WCS output support using MapServer, the --with-mapserver
option must be used. The path to mapserver-config which is located in the source code of MapServer
must also be set, using the following command:

$./configure --with-mapserver=/path/to/your/mapserver_config/

Read more about the Optional MapServer support.

XML2 Support (Required)

If xml2-config program is not found in PATH, a –with-xml2config option can be used to specify its loca-
tion. For instance, if xml2-config is installed in /usr/local/bin which is not in PATH, you may use the
following command:

$./configure --with-xml2config=/usr/local/bin/xml2-config

8 Chapter 2. ZOO-Project installation

ZOO-Project Documentation, Release 1.8

OGC API - Processing Support (Optional)

In case you want to activate the support for OGC API - Processing11, you can do so by using the –with-json:
You will then need to coy the oas.cfg file in the same directory as your main.cfg. For instance, one may
use the following command:

$./configure --with-json=/usr/

Python Support (Optional)

The --with-python=yes option is required to activate the ZOO-Kernel Python support, using the follow-
ing command:

$./configure --with-python=yes

This assumes that python-config is found in your PATH. If not, then you can specify the Python installation
directory using the following command (with Python installed in the /usr/local directory):

$./configure --with-python=/usr/local

Python Version If multiple Python versions are available and you want to use a specific one, then you
can use the --with-pyvers option as shown bellow:

$./configure --with-pyvers=2.7

JavaScript Support (Optional)

In order to activate the JavaScript support for ZOO-Kernel, the --with-js=yes configure option must be
specified. If you are using a “Debian-like” GNU/Linux distribution then dpkg will be used to detect if the
required packages are installed and you don’t have to specify anything here. The following command is
only needed (assuming that js_api.h and libmozjs.so are found in default directories):

$./configure --with-js=yes

If you want to use a custom installation of SpiderMonkey12 , or if you are not using a Debian packaging
system, then you’ll have to specify the directory where it is installed. For instance, if SpiderMonkey is in
/usr/local/, then the following command must be used:

$./configure --with-js=/usr/local

PHP Support (Optional)

The --with-php=yes option is required to activate the ZOO-Kernel PHP support‘, using the following
command:

$./configure --with-php=yes

This assumes that php-config can be found in the <PATH>/bin directory . So, supposing the your
php-config can be found in /usr/local/bin, then use the following command:

11https://github.com/opengeospatial/wps-rest-binding
12https://developer.mozilla.org/en/SpiderMonkey

2.3. Installation on Unix/Linux 9

https://github.com/opengeospatial/wps-rest-binding
https://developer.mozilla.org/en/SpiderMonkey

ZOO-Project Documentation, Release 1.8

$./configure --with-php=/usr/local

Warning: ZOO-Kernel optional PHP support requires a local PHP Embedded installation. Read more
herea.

ahttp://zoo-project.org/trac/wiki/ZooKernel/Embed/PHP

Java Support (Optional)

In order to activate the Java support for ZOO-Kernel, the –with-java configure option must be spec-
ified and sets the installation path of your Java SDK. For instance, if Java SDK is installed in the
/usr/lib/jvm/java-6-sun-1.6.0.22/ directory, then the following command can be used:

$./configure --with-java=/usr/lib/jvm/java-6-sun-1.6.0.22/

This assumes that the include/linux and jre/lib/i386/client/ subdirectories exist in
/usr/lib/jvm/java-6-sun-1.6.0.22/, and that the include/linux directory contains the jni.h
headers file and that the jre/lib/i386/client/ directory contains the libjvm.so file.

Note: You can use the –with-java-rpath option to produce a binary aware of the libjvm location.

Note: With Mac OS X you only have to set macos as the value for the --with-java option to activate Java
support. For example:

$./configure --with-java=macos

Perl Support (Optional)

The --with-perl=yes option can be used for activating the ZOO-Kernel Perl support, as follow:

$./configure --with-perl=yes

This assumes that perl is found in your PATH. For instance, if Perl is installed in /usr/local and
/usr/local/bin is not found in your PATH, then the following command can be used (this assumes
that /usr/local/bin/perl exists):

$./configure --with-perl=/usr/local

Orfeo Toolbox Support (Optional)

In order to activate the optional Orfeo Toolbox support, the --with-otb option must be used, using the
following command:

$./configure --with-otb=/path/to/your/otb/

Read more about the Optional Orfeo Toolbox support.

Warning: To build the Orfeo Toolbox support you will require ITK, the default version of ITK is 4.5, in
case you use another version, please make sure to use the --with-itk-version to specificy what is
the version available on your system.

10 Chapter 2. ZOO-Project installation

http://zoo-project.org/trac/wiki/ZooKernel/Embed/PHP

ZOO-Project Documentation, Release 1.8

SAGA GIS Support (Optional)

In order to activate the optional SAGA GIS support, the –with-saga option must be used, using the following
command:

$./configure --with-saga=/path/to/your/saga/

Read more about the Optional SAGA GIS support.

Warning: In case wx-config is not in your PATH please, make sure to use the --with-wx-config to
specify its location.

Translation support (Optional)

The ZOO-Kernel is able to translate the messages it produces in different natural languages. This requires
that you download the messages file13 translated in your language, if any. Then, for this translation support
to work, you have to generate manually the requested file on your system. For instance for the French
translation, you may use the following command:

msgfmt messagespo_fr_FR.utf8.po -o /usr/share/locale/fr/LC_MESSAGES/zoo-kernel.mo

The ZOO-Kernel is also able to handle translation of ZOO-Services. Please, refer to this document for more
details on the procedure to add new ZOO-Service translation files.

Warning: The location of the final .mo file may vary depending on your system setup.

2.3.3 Install ZOO-Services

Warning: We present here a global installation procedure for basics ZOO-Services, for details about au-
tomatic installation of services provided by Optional Orfeo Toolbox support or Optional SAGA GIS support,
please refer to there specific documentations.

Depending on the programming language used to implement the ZOO-Services you want to install, you
will need to build a Services Provider. In the case of C and Fotran, you would create a shared library
exporting the functions corresponding to all the ZOO-Services provided by this Services Provider. In case
of Java, you will need to build a Java Class. In any other programming language, you should simply have
to install the ServiceProvider and the zcfg files.

If building a Shared library or a Java class is required, then you should find a Makefile in the service
directory which is responsible to help you build this Services Provider. So you should simply run the make
command from the Service directory to generate the required file.

Then you simply need to copy the content of the cgi-env directory in cgi-bin.

To install the ogr/base-vect-ops Services Provider, supposing that your cgi-bin directory is
/usr/local/lib use the following commands:

cd zoo-project/zoo-services/ogr/base-vect-ops
make
cp cgi-env/*.* /usr/lib/cgi-bin

13https://www.transifex.com/projects/p/zoo-kernel-internationalization/

2.3. Installation on Unix/Linux 11

https://www.transifex.com/projects/p/zoo-kernel-internationalization/

ZOO-Project Documentation, Release 1.8

Note: You may also run make install directly after make.

To install the hello-py Services Provider, use the following commands:

cd zoo-project/zoo-services/hello-py/
cp cgi-env/* /usr/lib/cgi-bin

2.3.4 Testing your installation

To test your installation yous should first be able to run the following command from the cgi-bin direc-
tory:

./zoo_loader.cgi "request=GetCapabilities&service=WPS"

2.4 Installation on Debian / Ubuntu

Use the following instructions to install ZOO-Project14 on Debian or Ubuntu distributions.

2.4.1 Prerequisites

Using Debian

The following command should install all the required dependancies on Debian. See the Prerequisites section
for additional information.

apt-get install flex bison libfcgi-dev libxml2 libxml2-dev curl openssl autoconf apache2 python-software-properties subversion python-dev libgdal1-dev build-essential libmozjs185-dev libxslt1-dev

Using Ubuntu

On Ubuntu, use the following command first to install the required dependancies :

sudo apt-get install flex bison libfcgi-dev libxml2 libxml2-dev curl openssl autoconf apache2 python-software-properties subversion libmozjs185-dev python-dev build-essential libxslt1-dev

Then add the UbuntuGIS repository in order to get the latest versions of libraries

sudo add-apt-repository ppa:ubuntugis/ppa
sudo apt-get update

Install the geographic library as follow:

sudo apt-get install libgdal1-dev

2.4.2 Installation

Download ZOO-Project latest version from svn using the following command:

svn checkout http://svn.zoo-project.org/svn/trunk zoo-project

14http://zoo-project.org

12 Chapter 2. ZOO-Project installation

http://zoo-project.org

ZOO-Project Documentation, Release 1.8

Install the cgic library from packages using the following command:

cd zoo-project/thirds/cgic206/
make

Head to the ZOO-Kernel directory

cd ../../zoo-project/zoo-kernel/

Create a configure file as follow:

autoconf

Run configure with the desired options, for example with the following command:

./configure --with-js --with-python

Note: Refer to the installation section for the full list of available options

Compile ZOO-Kernel as follow:

make

Install the libzoo_service.so.1.5 by using the following command:

sudo make install

Copy the necessary files to the cgi-bin directory (as administrator user):

cp main.cfg /usr/lib/cgi-bin
cp zoo_loader.cgi /usr/lib/cgi-bin

Install ZOO ServiceProviders, for example the basic Python service (as administrator user)

cp ../zoo-services/hello-py/cgi-env/*.zcfg /usr/lib/cgi-bin
cp ../zoo-services/hello-py/cgi-env/*.py /usr/lib/cgi-bin/

Edit the main.cfg file as follow (example configuration):

nano /usr/lib/cgi-bin/main.cfg
- serverAddress = http://127.0.0.1

Test the ZOO-Kernel installation with the following requests:

http://127.0.0.1/cgi-bin/zoo_loader.cgi?ServiceProvider=&metapath=&Service=WPS&Request=GetCapabilities&Version=1.0.0

http://127.0.0.1/cgi-bin/zoo_loader.cgi?ServiceProvider=&metapath=&Service=WPS&Request=DescribeProcess&Version=1.0.0&Identifier=HelloPy

http://127.0.0.1/cgi-bin/zoo_loader.cgi?ServiceProvider=&metapath=&Service=WPS&Request=Execute&Version=1.0.0&Identifier=HelloPy&DataInputs=a=myname

Note: Such request should return well formed XML documents (OWS documents responses).

Warning: The URLs provided here suppose that you have previously setup a web server and defined
cgi-bin as a location where you can run cgi application.

Warning: If ZOO-Kernel returns an error please check the ZOO-Kernel configuration and beware of the
Prerequisites.

2.4. Installation on Debian / Ubuntu 13

ZOO-Project Documentation, Release 1.8

2.5 Install on OpenSUSE

ZOO-Kernel is maintained as a package in OpenSUSE Build Service (OBS)15. RPM are thus provided for all
versions of OpenSUSE Linux (11.2, 11.3, 11.4, Factory).

2.5.1 Stable release

Use the following instructions to install ZOO-Project latetst release on OpenSUSE distribution.

One-click installer

A one-click installer is available here16. For openSUSE 11.4, follow this direct link17.

Yast software manager

Add the Application:Geo18 repository to the software repositories and then ZOO-Kernel can then be found
in Software Management using the provided search tool.

Command line (as root for openSUSE 11.4)

Install ZOO-Kernel package by yourself using the following command:

zypper ar http://download.opensuse.org/repositories/Application:/Geo/openSUSE_11.4/
zypper refresh
zypper install zoo-kernel

Developement version

The latest development version of ZOO-Kernel can be found in OBS under the project home:tzotsos19.
ZOO-Kernel packages are maintained and tested there before being released to the Application:Geo repos-
itory. Installation methods are identical as for the stable version. Make sure to use this20 repository instead.

Command line (as root for openSUSE 11.4)

Install latest ZOO-Kernel trunk version with the following command:

zypper ar http://download.opensuse.org/repositories/home:/tzotsos/openSUSE_11.4/
zypper refresh
zypper install zoo-kernel
zypper install zoo-kernel-grass-bridge

Note that there is the option of adding the zoo-wps-grass-bridge package. This option will automatically
install grass7 (svn trunk).

15https://build.opensuse.org/package/show?package=zoo-kernel&project=Application%3AGeo
16http://software.opensuse.org/search?q=zoo-kernel&baseproject=openSUSE%3A11.4&lang=en&exclude_debug=true
17http://software.opensuse.org/ymp/Application:Geo/openSUSE_11.4/zoo-kernel.ymp?base=openSUSE%3A11.4&query=zoo-

kernel
18http://download.opensuse.org/repositories/Application:/Geo/
19https://build.opensuse.org/project/show?project=home%3Atzotsos
20http://download.opensuse.org/repositories/home:/tzotsos/

14 Chapter 2. ZOO-Project installation

https://build.opensuse.org/package/show?package=zoo-kernel&project=Application%3AGeo
http://software.opensuse.org/search?q=zoo-kernel&baseproject=openSUSE%3A11.4&lang=en&exclude_debug=true
http://software.opensuse.org/ymp/Application:Geo/openSUSE_11.4/zoo-kernel.ymp?base=openSUSE%3A11.4&query=zoo-kernel
http://download.opensuse.org/repositories/Application:/Geo/
https://build.opensuse.org/project/show?project=home%3Atzotsos
http://download.opensuse.org/repositories/home:/tzotsos/

ZOO-Project Documentation, Release 1.8

2.6 Installation on CentOS

Use the following instructions to install ZOO-Project21 on CentOS distributions.

2.6.1 Prerequisites

First you should add the ELGIS Repository22 then install the dependencies by using yum commands.

rpm -Uvh http://elgis.argeo.org/repos/6/elgis-release-6-6_0.noarch.rpm
rpm -Uvh \

http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
wget\

http://proj.badc.rl.ac.uk/cedaservices/raw-attachment/ticket/670/armadillo-3.800.2-1.el6.x86_64.rpm
yum install armadillo-3.800.2-1.el6.x86_64.rpm
yum install hdf5.so.6
yum install gcc-c++ zlib-devel libxml2-devel bison openssl \

python-devel subversion libxslt-devel libcurl-devel \
gdal-devel proj-devel libuuid-devel openssl-devel fcgi-devel

yum install java-1.7.0-openjdk-devel

2.6.2 Installation

Now refer to general instructions from Installation on Unix/Linux to setup your ZOO-Kernel and the ZOO-
Services of your choice.

Note: In case you use the Java support, please, make sure to use the correct version of both java and javac
using the following commands:

update-alternatives --config java
update-alternatives --config javac

Also, make sure to add the following to your main.cfg file before trying to execute any Java service:

[javax]
ss=2m

2.7 Installation on Windows ™

2.7.1 Install ZOO-Project binaries

Note: The content of the ZOO-Project Windows-Binaries is based on GISInternals SDK23, make sure to
refer to license informations.

Note: When using the ZOO-Project Windows-Binaries, you can decide if you want the Java support acti-
vated or not (which is the case per default). Indeed, once your installation has been done, you will have both
a zoo_loader.cgi and zoo_loader_java.cgi which correspond respectively to the ZOO-Kernel without and with

21http://zoo-project.org
22http://elgis.argeo.org
23http://www.gisinternals.com/release.php

2.6. Installation on CentOS 15

http://zoo-project.org
http://elgis.argeo.org
http://www.gisinternals.com/release.php

ZOO-Project Documentation, Release 1.8

Java support activated. So, in case you want to use the Java support, simply rename the zoo_loader_jave.cgi
file located in c:\inetpub\cgi-bin to zoo_loader.cgi and make sure the jvm.dll can be found.

Using the installer

Prior to run the ZOO-Project-Installer, please make sure you have IIS and Python24 setup on your machine.
Then download the ZOO-Project-Installer25 corresponding to your platform. The first time you will run the
installer binary, you may be prompted to authorize it to run. Once the installer has been run, simply access
the following link: http://localhost/zoo-demo/ to access your local demo application.

Install by hand

Prior to run the ZOO-Project-Installer, please make sure you have IIS and Python26 setup on your machine.
Then download the ZOO-Project27 archive corresponding to your platform. Uncompress it, then move cgi-
bin, data and tmp from uncompressed folder to c:\inetpub, also move wwwroot\zoo-demo and wwwroot\tmp
to c:\inetpub\wwwroot. To finish the installation, run the folllowing command as administrator to allow the
zoo_loader.cgi to run from http://localhost/cgi-bin/zoo_loader.cgi:

cd C:\Windows\System32\inetsrv
appcmd.exe add vdirs /app.name:"Default Web Site/" /path:/cgi-bin /physicalPath:c:\inetpub\cgi-bin
appcmd set config /section:handlers /+[name='CGI-exe1',path='*.cgi',verb='*',modules='CgiModule']
appcmd.exe set config /section:isapiCgiRestriction /+[path='c:\inetpub\cgi-bin\zoo_loader.cgi',description='ZOO-Project',allowed='True']

2.7.2 Compile ZOO-Project from source

Warning: Ensure to first perform the prerequisite steps before compiling the ZOO Kernel.

The following steps are for use with the Microsoft Visual Studio compiler (and tested with MSVC 2010).

1. Make sure the gnuwin32 tools bison.exe and flex.exe are found in your path. You can download
the GNUwin32 tools here28.

2. Modify the nmake.opt file to point to your local libraries. Note that you can also use definition
directly in the command line if you prefer. See Build options for details about this options.

3. Execute:

nmake /f makefile.vc

4. A file zoo_loader.cgi and libzoo_service.dll should be created. Note that if another file
named zoo_loader.cgi.manifest is also created, you will have to run another command:

nmake /f makefile.vc embed-manifest

5. Copy the files zoo_loader.cgi, libzoo_service.dll and main.cfg into your cgi-bin direc-
tory.

6. Using the command prompt, test the ZOO-Kernel by executing the following command:

24https://www.python.org/downloads/windows/
25https://bintray.com/gfenoy/ZOO-Project/Windows-Binaries/view
26https://www.python.org/downloads/windows/
27https://bintray.com/gfenoy/ZOO-Project/Windows-Binaries/view
28http://www.zoo-project.org/dl/tool-win32.zip

16 Chapter 2. ZOO-Project installation

https://www.python.org/downloads/windows/
https://bintray.com/gfenoy/ZOO-Project/Windows-Binaries/view
http://localhost/zoo-demo/
https://www.python.org/downloads/windows/
https://bintray.com/gfenoy/ZOO-Project/Windows-Binaries/view
http://localhost/cgi-bin/zoo_loader.cgi
http://www.zoo-project.org/dl/tool-win32.zip

ZOO-Project Documentation, Release 1.8

D:\ms4w\Apache\cgi-bin> zoo_loader.cgi

which should display a message such as:

Content-Type: text/xml; charset=utf-8
Status: 200 OK

<?xml version="1.0" encoding="utf-8"?>
<ows:ExceptionReport xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.opengis.net/ows/1.1 http://schemas.opengis.net/ows/1.1.0/owsExceptionReport.xsd" xml:lang="en-US" version="1.1.0">
<ows:Exception exceptionCode="MissingParameterValue">

<ows:ExceptionText>Parameter <request> was not specified</ows:ExceptionText>
</ows:Exception>

</ows:ExceptionReport>

7. Edit the main.cfg file so that it contains values describing your WPS service. An example of such a
file running on Windows is:

[main]
encoding = utf-8
version = 1.0.0
serverAddress = http://localhost/
lang = en-CA
tmpPath=/ms4w/tmp/ms_tmp/
tmpUrl = /ms_tmp/

[identification]
title = The Zoo WPS Development Server
abstract = Development version of ZooWPS. See http://www.zoo-project.org
fees = None
accessConstraints = none
keywords = WPS,GIS,buffer

[provider]
providerName=Gateway Geomatics
providerSite=http://www.gatewaygeomatics.com
individualName=Jeff McKenna
positionName=Director
role=Dev
adressDeliveryPoint=1101 Blue Rocks Road
addressCity=Lunenburg
addressAdministrativeArea=False
addressPostalCode=B0J 2C0
addressCountry=ca
addressElectronicMailAddress=info@gatewaygeomatics.com
phoneVoice=False
phoneFacsimile=False

8. Open a web browser window, and execute a GetCapababilites request on your WPS service:
http://localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS

The response should be displayed in your browser, such as:

<wps:Capabilities xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsGetCapabilities_response.xsd" service="WPS" xml:lang="en-US" version="1.0.0">
<ows:ServiceIdentification>
<ows:Title>The Zoo WPS Development Server</ows:Title>
<ows:Abstract>

Development version of ZooWPS. See http://www.zoo-project.org
</ows:Abstract>
<ows:Keywords>

2.7. Installation on Windows ™ 17

http://localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS

ZOO-Project Documentation, Release 1.8

<ows:Keyword>WPS</ows:Keyword>
<ows:Keyword>GIS</ows:Keyword>
<ows:Keyword>buffer</ows:Keyword>

</ows:Keywords>
<ows:ServiceType>WPS</ows:ServiceType>
<ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>
...

Build options

Various build options can be set in the nmake.opt file to define the location of the built libraries you
want to use to build your ZOO-Kernel. Some are optional and some are required, they are listed below
exhaustively:

• gettext (Required)
• libCURL (Required)
• libFCGI (Required)
• libXML2 (Required)
• OpenSSL (Required)
• GDAL (Required)
• MapServer (Optional)
• Python (Optional)
• JavaScript (Optional)
• PHP (Optional)
• Database backend (Optional)

gettext (Required)

The location of the libintl (built when building gettext) should be specified by defining the INTL_DIR
environment variable. It supposes that the header and the intl.lib file are available.

So for instance, in case you build the gettext in \buildkit\srcs\gettext-0.14.6, you may define the
following before running nmake /f makefile.vc:

set INTL_DIR=\buildkit\srcs\gettext-0.14.6\gettext-runtime\intl

libCURL (Required)

The location of the libCURL should be specified by defining the CURL_DIR environment variable. It sup-
poses that there are 2 sub-directory include containing the libCURL header and lib which contains the
libcurl.lib file.

So for instance, in case you build the libCURL in \buildkit\srcs\curl-7.38.0, you may define the
following before running nmake /f makefile.vc:

set CURL_DIR=\buildkit\srcs\curl-7.38.0\builds\libcurl-vc10-x86-release-dll-ssl-dll-zlib-dll-ipvs6-sspi

18 Chapter 2. ZOO-Project installation

ZOO-Project Documentation, Release 1.8

libFCGI (Required)

The location of the libFCGI should be specified by defining the FCGI_DIR environment variable. It sup-
poses that there are 2 sub-directory include containing the FastCGI header and libfcgi/Release
which contains the libfcgi.lib file.

So for instance, in case you build the libXML2 library in \buildkit\srcs\fcgi-2.4.1, you may define
the following before running nmake /f makefile.vc:

set FCGI_DIR=\buildkit\srcs\fcgi-2.41.1

libXML2 (Required)

The location of the libXML2 should be specified by defining the XML2_DIR environment variable. It sup-
poses that there are 2 sub-directory include containing the libXML2 header and win32\bin.msvcwhich
contains the libxml2.lib file.

So for instance, in case you build the libXML2 library in \buildkit\srcs\libxml2-2.9.0, you may
define the following before running nmake /f makefile.vc:

set XML2_DIR=\buildkit\srcs\libxml2-2.9.0

OpenSSL (Required)

The location of the OpenSSL library should be specified by defining the SSL_DIR environment variable. It
supposes that there are 2 sub-directory inc32 containing the header files and out32dll which contains
the ssleay32.lib file.

So for instance, in case you build the libXML2 library in \buildkit\srcs\openssl-1.0.2c, you may
define the following before running nmake /f makefile.vc:

set SSL_DIR=\buildkit\srcs\openssl-1.0.2c

GDAL (Required)

The location of the GDAL library should be specified by defining the GDAL_DIR environment vari-
able. It corresponds to the path where you uncompress and built GDAL, it supposes that you have the
gdal_i.lib file available in this directory.

So for instance, in case you build the libXML2 library in \buildkit\srcs\gdal-1.10.1, you may de-
fine the following before running nmake /f makefile.vc:

set GDAL_DIR=\buildkit\srcs\gdal-1.10.1

MapServer (Optional)

The location of the MapServer library path should be specified by defining the MS_DIR environment vari-
able. It corresponds to the path where you build MapServer on your system, this directory should contain
the nmake.opt file used.

So for instance, in case you build Python in \buildkit\srcs\mapserver-6.2.0, you may define the
following before running nmake /f makefile.vc:

2.7. Installation on Windows ™ 19

ZOO-Project Documentation, Release 1.8

set MS_DIR=\buildkit\srcs\mapserver-6.2.0

Python (Optional)

The location of the Python binaries path should be specified by defining the PY_DIR environment variable.
It corresponds to the path where you build Python on your system. The location of the pythonXX.lib
files should be specified by setting the PY_LIBRARY environment variable.

So for instance, in case you build Python in \buildkit\srcs\Python-2.7, you may define the follow-
ing before running nmake /f makefile.vc:

set PY_DIR=\buildkit\srcs\Python-2.7
set PY_LIBRARY=\buildkit\srcs\Python-2.7\PCBuild\python27.lib

JavaScript (Optional)

The location of libmozjs should be specified by defining the JS_DIR environment variable. It corre-
sponds to the path where you build libmozjs on your system, it supposes that the header and the
mozjs185-1.0.lib file are available in this directory.

So for instance, in case you build libmozjs in \buildkit\srcs\js-1.8.5, you may define the following
before running nmake /f makefile.vc:

set JS_DIR=\buildkit\srcs\js-1.8.5

PHP (Optional)

The location of PHP should be specified by defining the PHP_DIR environment variable. It corresponds
to the path where you build PHP on your system. The location of the php5embed.lib files should be
specified by setting the PHP_LIB environment variable.

So for instance, in case you build PHP in \buildkit\srcs\php-5.5.10, you may define the following
before running nmake /f makefile.vc:

set PHP_DIR=\buildkit\srcs\php-5.5.10
set PHP_LIB=\buildkit\srcs\php-5.5.10\Release_TS\php5embed.lib

Database backend (Optional)

ZOO-Kernel can use a database backend to store ongoing status informations of running services, for ac-
tivating this operation mode, you should define the evironment variable DB and set it to any value. So, to
activate this option, you may use the following before running nmake /f makefile.vc:

set DB=activated

Note: To learn how to setup the corresponding database, please refer to this section.

Optionally Compile Individual Services

An example could be the OGR base-vect-ops provider located in the
zoo-project\zoo-services\ogr\base-vect-ops directory.

20 Chapter 2. ZOO-Project installation

ZOO-Project Documentation, Release 1.8

1. First edit the makefile.vc located in that directory, and execute:

nmake /f makefile.vc

Inside that same directory, the ogr_service.zo file should be created.

2. Copy all the files inside zoo-services\ogr\base-vect-ops\cgi-env into your cgi-bin di-
rectory

3. Test this service provider through the following URL:

http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=Buffer&DataInputs=BufferDistance=1@datatype=interger;InputPolygon=Reference@xlink:href=http%3A%2F%2Fwww.zoo-
project.org%3A8082%2Fgeoserver%2Fows%3FSERVICE%3DWFS%26REQUEST%3DGetFeature%26VERSION%3D1.0.0%26typename%3Dtopp%3Astates%26SRS%3DEPSG%3A4326%26FeatureID%3Dstates.15

The response displayed in your browser should contain:

<wps:ProcessSucceeded>Service "Buffer" run successfully.</wps:ProcessSucceeded>

2.7. Installation on Windows ™ 21

http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=Buffer&DataInputs=BufferDistance=1@datatype=interger;InputPolygon=Reference@xlink:href=http%3A%2F%2Fwww.zoo-project.org%3A8082%2Fgeoserver%2Fows%3FSERVICE%3DWFS%26REQUEST%3DGetFeature%26VERSION%3D1.0.0%26typename%3Dtopp%3Astates%26SRS%3DEPSG%3A4326%26FeatureID%3Dstates.15
http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=Buffer&DataInputs=BufferDistance=1@datatype=interger;InputPolygon=Reference@xlink:href=http%3A%2F%2Fwww.zoo-project.org%3A8082%2Fgeoserver%2Fows%3FSERVICE%3DWFS%26REQUEST%3DGetFeature%26VERSION%3D1.0.0%26typename%3Dtopp%3Astates%26SRS%3DEPSG%3A4326%26FeatureID%3Dstates.15

ZOO-Project Documentation, Release 1.8

22 Chapter 2. ZOO-Project installation

CHAPTER

THREE

ZOO-KERNEL

This section provides information on ZOO-Kernel , the ZOO-Project1 WPS server. It will help you to
configure and compile ZOO-Kernel.

3.1 What is ZOO-Kernel ?

ZOO-Kernel is the heart of the ZOO-Project2 WPS platform. It is a WPS compliant implementation written
in C language which provides a powerful and extensible WPS server.

ZOO-Kernel is an extensible WPS server that makes your system more powerful. It provides a full-featured
processing engine which runs on Linux, Mac OSX ™ and Windows ™ operating systems. ZOO-Kernel is
a CGI program which works on common web servers (namely Apache3 or IIS4 ™). It can be seamlessly
integrated to new or existing web platforms.

ZOO-Kernel lets you process geospatial or non geospatial data using well formed WPS requests. The WPS
server is able to manage and chain WPS Services (see ZOO-Services for examples) by loading dynamic
libraries and source code written in different programming languages.

3.1.1 First class WPS server

Simple

The ZOO-Kernel rely on simple principles and tends to ease the implementation of new services by sharing
similar data structures for every supported programming languages. The ZOO-Kernel is responsible to
parse the requests it receives and return the corresponding WPS response.

In case of an Execute request, the ZOO-Kernel stores informations in a basic KVP data structure for the
programming language used to implement the service, dynamically load the Service Provider defined in
the zcfg file and run a specific function corresponding to the service, passing three arguments. Once the
function return, ZOO-Kernel knows if the service run succeessfuly or failed by checking the returned value.
In the case it succeeded, the ZOO-Kernel then parse the third arguments containing the result and produce
the output in the desired format.

1http://zoo-project.org
2http://zoo-project.org
3http://httpd.apache.org/
4http://www.iis.net/

23

http://zoo-project.org
http://zoo-project.org
http://httpd.apache.org/
http://www.iis.net/

ZOO-Project Documentation, Release 1.8

Compliant

ZOO-Kernel implements and complies with the WPS 1.0.05 and the WPS 2.0.06 standards edited by the
Open Geospatial Consortium7. It is able to perform the WPS operations defined in the OpenGIS ® specifi-
cation, such as:

• GetCapablities: Returns service-level metadata information.It provides the list of available process-
ing services.

• DescribeProcess: Returns a description of a process, including its supported input and output.

• Execute: Launches computation and returns the output produced by a particular process.

• GetStatus: only available in WPS 2.0.0, it lets the client fetch the ongoing status of a running service.

• GetResult: only available in WPS 2.0.0, it lets the client fetch the final result of a running service.

• Dismiss: only available in WPS 2.0.0, it lets the client ask the server to stop a running service and
remove any file it created.

ZOO-Kernel compliancy and performances can be tested using the following tools:

• cptesting8

• WPS Test Suite provided by the OGC compliancy program9

• XML responses validity can also be simply tested using XMLint10.

Polyglot

ZOO-Kernel is a polyglot. The software is written in a valid form of multiple programming languages,
which performs the same operations independent of the programming language used to compile or inter-
pret it. The supported programming languages are listed bellow:

5http://www.opengeospatial.org/standards/wps/
6http://www.opengeospatial.org/standards/wps/
7http://www.opengeospatial.org/
8https://github.com/WPS-Benchmarking/cptesting
9http://cite.opengeospatial.org/

10http://xmlsoft.org/xmllint.html/

24 Chapter 3. ZOO-Kernel

http://www.opengeospatial.org/standards/wps/
http://www.opengeospatial.org/standards/wps/
http://www.opengeospatial.org/
https://github.com/WPS-Benchmarking/cptesting
http://cite.opengeospatial.org/
http://xmlsoft.org/xmllint.html/

ZOO-Project Documentation, Release 1.8

Lan-
guage

Service-
Provider

DataStructure Return

C /
C++

Shared
Library

maps* M integer

Java Class File HashMap11 integer
C# Class File ZMaps12 integer
Python Module

File
Dictionary13 integer

PHP Script
File

Array14 integer

Perl Script
File

integer

Ruby Script
File

Hash15 integer

For-
tran

Shared
Library

CHARACTER*(1024) M(10,30) integer

R Script file R List16 integer
JavaScriptScript file Object17 or Array Ob-

ject/Array

3.2 ZOO-Kernel configuration

3.2.1 Main configuration file

ZOO-Kernel general settings are defined in a configuration file called main.cfg. This file is stored in
the same directory as ZOO-Kernel (/usr/lib/cgi-bin/ in most cases). It provides usefull metadata
information on your ZOO-Kernel installation.

Warning: ZOO-Kernel (/usr/lib/cgi-bin/zoo_loader.cgi) and its configuration file
(/usr/lib/cgi-bin/main.cfg) must be in the same directory.

Note: Information contained by /usr/lib/cgi-bin/main.cfg is accessible from WPS Services at run-
time, so when Execute requests are used.

Default main.cfg

An example main.cfg file is given here as reference.

1 [headers]
2 X-Powered-By=ZOO@ZOO-Project
3

4 [main]
5 version=1.0.0
6 encoding=utf-8

11http://download.oracle.com/javase/6/docs/api/java/util/HashMap.html
12https://docs.microsoft.com/fr-fr/dotnet/api/system.collections.generic.dictionary-2?view=netframework-4.8
13http://docs.python.org/tutorial/datastructures.html#dictionaries
14http://php.net/manual/language.types.array.php
15http://ruby-doc.org/core-2.2.0/Hash.html
16https://cran.r-project.org/doc/manuals/r-release/R-lang.html#List-objects
17http://www.json.org/

3.2. ZOO-Kernel configuration 25

http://download.oracle.com/javase/6/docs/api/java/util/HashMap.html
https://docs.microsoft.com/fr-fr/dotnet/api/system.collections.generic.dictionary-2?view=netframework-4.8
http://docs.python.org/tutorial/datastructures.html#dictionaries
http://php.net/manual/language.types.array.php
http://ruby-doc.org/core-2.2.0/Hash.html
https://cran.r-project.org/doc/manuals/r-release/R-lang.html#List-objects
http://www.json.org/

ZOO-Project Documentation, Release 1.8

7 dataPath=/var/data
8 tmpPath=/var/www/temp
9 cacheDir=/var/www/cache

10 sessPath=/tmp
11 serverAddress=http://localhost/cgi-bin/zoo_loader.cgi
12 lang=fr-FR,ja-JP
13 language=en-US
14 mapserverAddress=http://localhost/cgi-bin/mapserv.cgi
15 msOgcVersion=1.0.0
16 tmpUrl=http:/localhost/temp/
17 cors=false
18

19 [identification]
20 keywords=t,ZOO-Project, ZOO-Kernel,WPS,GIS
21 title=ZOO-Project demo instance
22 abstract= This is ZOO-Project, the Open WPS platform.
23 accessConstraints=none
24 fees=None
25

26 [provider]
27 positionName=Developer
28 providerName=GeoLabs SARL
29 addressAdministrativeArea=False
30 addressDeliveryPoint=1280, avenue des Platanes
31 addressCountry=fr
32 phoneVoice=+33467430995
33 addressPostalCode=34970
34 role=Dev
35 providerSite=http://geolabs.fr
36 phoneFacsimile=False
37 addressElectronicMailAddress=gerald@geolabs.fr
38 addressCity=Lattes
39 individualName=Gerald FENOY

Main section

The main.cfg [main] section parameters are explained bellow.

• version: Supported WPS version.

• encoding: Default encoding of WPS Responses.

• dataPath: Path to the directory where data files are stored (used to store mapfiles and data when
MapServer support is activated).

• tmpPath: Path to the directory where temporary files are stored (such as ExecuteResponse when store-
ExecuteResponse is set to true).

• tmpUrl: URL to access the temporary files directory (cf. tmpPath).

• cacheDir: Path to the directory where cached request files 1 are stored (optional).

• serverAddress: URL to the ZOO-Kernel instance.

• mapservAddress: URL to the MapServer instance (optional).

1 If GET requests are passed through xlink:href to the ZOO-Kernel , the latter will execute the request the first time and store
the result on disk. The next time the same request is executed, the cached file will be used and this will make your process run much
faster. If cachedir was not specified in the main.cfg then the tmpPath value will be used.

26 Chapter 3. ZOO-Kernel

ZOO-Project Documentation, Release 1.8

• msOgcVersion: Version of all supported OGC Web Services output 2 (optional).

• lang: Supported natural languages separated by a coma (the first is the default one),

• cors: Define if the ZOO-Kernel should support Cross-Origin Resource Sharing18. If this parameter
is not defined, then the ZOO-Kernel won’t support CORS.

• servicePath: Define a specific location to search for services rather than using the ZOO-Kernel
directory. If this parameter is not defined, then the ZOO-Kernel will search for services using its
directory.

• libPath: (Optional) Path to a directory where the ZOO-kernel should search for service providers,
e.g., shared libraries with service implementations (the serviceProvider parameter in the service
configuration (.zcfg) file).

• memory: (Optional) can take the value load to ensure that the value field of the inputs data will be
filled by the ZOO-Kernel or protected to have only the cache_file filled.

• handleText: (Optional) set it to true to get your Complex data nodes containing text not requiring
a single CDATA node. Be aware that in case you use any HTML or XML there, you will then need to
rebuild the string to get the original format of the text from your service code. In case you do not add
handleText or set its value to true, you will simply need to use the value as it was provided in a single
CDATA node provided in the Execute request.

Warning: The libPath parameter is currently only recognized by services implemented in C/C++ or
PHP, and may be moved to another section in future versions.

Warning: Depending on the memory parameter the WPS Service will receive different fields (value or
cache_file).

In case you have activated the MapServer support, please refer to this specific section.

Identification and Provider

The [identification] and [provider] sections are not ZOO-Project specific. They provide OGC
metadata 3 and should be set according to the XML Schema Document19 which encodes the parts of ISO
19115 used by the common ServiceIdentification and ServiceProvider sections of the GetCapabilities operation
response, known as the service metadata XML document.

Details of the common OWS 1.1.0 ServiceIdentification section can be found in this XML Schema Document20.

Details of the common OWS 1.1.0 ServiceProvider section can be found in this XML Schema Document21.

3.2.2 Additional sections

All the additional sections discribed in the following section are optional.

2 Usefull when the Optional MapServer support is activated (available since ZOO-Project version 1.3.0).
18https://www.w3.org/TR/cors/
3 ZOO-Kernel and MapServer are sharing the same metadata for OGC Web Services if the Optional MapServer support is activated.

19http://schemas.opengis.net/ows/1.1.0/ows19115subset.xsd
20http://schemas.opengis.net/ows/1.1.0/owsServiceIdentification.xsd
21http://schemas.opengis.net/ows/1.1.0/owsServiceProvider.xsd

3.2. ZOO-Kernel configuration 27

https://www.w3.org/TR/cors/
http://schemas.opengis.net/ows/1.1.0/ows19115subset.xsd
http://schemas.opengis.net/ows/1.1.0/owsServiceIdentification.xsd
http://schemas.opengis.net/ows/1.1.0/owsServiceProvider.xsd

ZOO-Project Documentation, Release 1.8

Headers section

The [headers] section can be set in order to define a specific HTTP Response header, which will be used
for every response. As an example, you can check http://zoo-project.org using curl command line tool and
notice the specific header X-Powered-By: Zoo-Project@Trac.

In case you want to allow CORS support for POST requests coming from myhost.net, then you should
define the following minimal parameters in this section:

1 Access-Control-Allow-Origin=myhost.net
2 Access-Control-Allow-Methods=POST
3 Access-Control-Allow-Headers=content-type

curl section

The [curl] section is used on windows platform to specify, using the cainfo parameter, where is located the
cacert.pem22 file on your machine. An example bellow is provided to illustrate sur a setting.

1 [curl]
2 cainfo=./cacert.pem

env section

The [env] section can be used to store specific environment variables to be set prior the loading of Services
Provider and Service execution.

A typical example is when a Service requires the access to a X server running on framebuffer, which takes to
set the DISPLAY environnement variable, as follow:

1 [env]
2 DISPLAY=:1

In case you have activated the OTB support, please refer to this specific section.

lenv section

The lenv section is used by the ZOO-Kernel to store runtime informations before the execution of a WPS
service, it contains the following parameters:

• sid (r): The WPS Service unique identifier,

• status (rw): The current progress value (a value between 0 and 100 in percent (%)),

• cwd (r): The current working directory of ZOO-Kernel,

• message (rw): An error message used when SERVICE_FAILED is returned (optional),

• cookie (rw): The cookie to be returned to the client (for example for authentication purpose).

• file.pid (r): The file used by the ZOO-Kernel to store process identifier.

• file.sid (r): The file used by the ZOO-Kernel to store service identifier.

• file.responseInit (r): The file used by the ZOO-Kernel to store the initial (then final) WPS re-
sponse.

22https://curl.haxx.se/docs/caextract.html

28 Chapter 3. ZOO-Kernel

http://zoo-project.org
https://curl.haxx.se/docs/caextract.html

ZOO-Project Documentation, Release 1.8

• file.responseFinal (r): The file used by the ZOO-Kernel to temporary store the final WPS re-
sponse.

renv section

The renv section is automatically created by the ZOO-Kernel before the execution of a WPS service, it
contains all the environment variables available at runtime (so including the header fields in case it is used
through http, refer to [https://tools.ietf.org/html/rfc3875 rfc3875] for more details).

senv section

The senv section can be used to store sessions information on the server side. Such information can then be
accessed automatically from the Service if the server is requested using a valid cookie (as defined in lenv
section). ZOO-Kernel will store the values set in the senv maps on disk, load it and dynamically replace
its content to the one in the main.cfg. The senv section must contain the following parameter at least:

• XXX: The session unique identifier where XXX is the name included in the cookie which is returned.

For instance, adding the following in the Service source code :

conf["lenv"]["cookie"]="XXX=XXX1000000; path=/"
conf["senv"]={"XXX": "XXX1000000","login": "demoUser"}

means that ZOO-Kernel will create a file named sess_XXX1000000.cfg in the cacheDir directory, and
will return the specified cookie to the client. Each time the client will request ZOO-Kernel using this cookie,
it will automatically load the value stored before the Service execution.

Security section

The [security] section can be used to define what headers, the ZOO-Kernel has initially received in the
request, should be passed to other servers for accessing resources (such as WMS, WFS, WCS or any other
file passed as a reference). This section contains two parameters:

• attributes: The header to pass to other servers (such as Authorization, Cookie, User-Agent ...),

• hosts: The host for wich the restriction apply (can be “*” to forward header to every server or a coma
separated list of host names, domain, IP).

Both parameters are mandatory.

Suppose you need to share Authorization, Cookie and User-Agent to every server for accessing ressources,
then yo ucan use the following section definition:

[security]
attributes=Authorization,Cookie,User-Agent
hosts=*

In case only local servers require such header forwarding, you may use the following definition:

[security]
attributes=Authorization,Cookie,User-Agent
hosts=localhost,127.0.0.1

Optionaly, you can also define the shared url(s), meaning that even if the ressource requires authentication
to be accessed, this authentifcation won’t be used to define the name for storing the file. Hence, two user
with different authentication will use the same file as it is considerated as shared. You can find bellow
a sample security section containing the shared parameter. In this example, every requests to access the

3.2. ZOO-Kernel configuration 29

https://tools.ietf.org/html/rfc3875

ZOO-Project Documentation, Release 1.8

coverage using the url defined in the shared parameter (myHost/cgi-bin/WCS_Server) will be shared
between users.

[security]
attributes=Authorization,Cookie,User-Agent
hosts=localhost,127.0.0.1
shared=myHost/cgi-bin/WCS_Server

Database section

The database section allows to configure the ZOO-Kernel optional database support.

[database]
dbname=zoo_project
port=5432
user=username
host=127.0.0.1
type=PG
schema=public

This will generate strings to be passed to GDAL to connect the database server:

<type>:host=<host> port=<port> user=<user> dbname=<dbname>

With the previous database section, it will give the following:

PG:"dbname=zoo_project host=127.0.0.1 port=5432 user=username"

Please refer to this section to learn how to setup the database.

Metadb section

The metadb section allows to configure the ZOO-Kernel to access the metadata information about WPS Services
by using a PostgreSQL database in addition to the zcfg files.

[metadb]
dbname=zoo_metadb
port=5432
user=username
host=127.0.0.1
type=PG

This will generate strings to be passed to GDAL to connect the database server:

<type>:host=<host> port=<port> user=<user> dbname=<dbname>

With the previous database section, it will give the following:

PG:"dbname=zoo_metadb host=127.0.0.1 port=5432 user=username"

Please refer to this section to learn how to setup the database.

Include section

The [include] section (optional) lists explicitely a set of service configuration files the the ZOO-Kernel
should parse, e.g.,

30 Chapter 3. ZOO-Kernel

ZOO-Project Documentation, Release 1.8

1 [include]
2 servicename1 = /my/service/repository/service1.zcfg
3 servicename2 = /my/service/repository/service2.zcfg

The [include] section may be used to control which services are exposed to particular user groups. While
service configuration files (.zcfg) may be located in a common repository or in arbitrary folders, main.cfg
files at different URLs may include different subsets of services.

When the ZOO-Kernel handles a request, it will first check if there is an [include] section in main.cfg
and then search for other .zcfg files in the current working directory (CWD) and subdirectories. If an
included service happens to be located in a CWD (sub)directory, it will be published by its name in the
[include] section. For example, the service /[CWD]/name/space/myService.zcfg would normally
be published as name.space.myService, but if it is listed in the [include] section it will be published
simply as myService:

1 [include]
2 myService = /[CWD]/name/space/myService.zcfg

On the other hand, with

1 [include]
2 myService = /some/other/dir/myService.zcfg

there would be two distinct services published as myService and name.space.myService, respectively, with
two different zcfg files.

Note: As currently implemented, the ZOO-Kernel searches the CWD for the library files of included
services if the libPath parameter is not set.

3.2.3 OpenAPI Specification configuration file

Since revision 949 of the ZOO-Kernel, you can now activate the OGC API - Processing support. In such a
case you will need to have an oas.cfg file located in tne same directory where the main.cfg is.

This oas.cfg file gets the same syntactic rules than the main.cfg. The ZOO-Kernel uses this file to
produce information about the open API specification it is referring to.

The first section to be found in the oas.cfg file should be the [openapi]. It contains the following
parameters:

• rootUrl: the URL to access the ZOO-Kernel using OGC API - Processing

• links: the links provided from the root

• paths: the full paths list

• parameters: the parameters list defined in paths

• header_parameters: the parameters list client applications can send as header

• version: the Open API Specification version

For any links and paths /A defined, you will have a corresponding [/A] and [A] sections. In the [/A]
section you will define the rel, type and title used from the root URL to produce the links23 list and the
paths object24 from. In the corresponding [A] section, you will define the following parameters:

• method: the HTTP method to use to access this resource
23https://github.com/opengeospatial/wps-rest-binding/blob/master/core/openapi/schemas/link.yaml
24https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#pathsObject

3.2. ZOO-Kernel configuration 31

https://github.com/opengeospatial/wps-rest-binding/blob/master/core/openapi/schemas/link.yaml
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#pathsObject

ZOO-Project Documentation, Release 1.8

• title: resource title

• abstract: resource description

• tags: tags to classify this resource

• tags_description: the tag description

• schema: the schema specifying the resource

In case you want to define multiple methods to access a resource, you can then use the length parameter
to define the number of parameters group to parse, then use method_1, title_1, abstract_1, tags_1,
tags_description_1 and schema_1 and so on to add one or more access method (and other attributes)
to this resource.

When declaring resource access you may want to add a parameter to your request. In such a case, you can
add a parameter named “parameters” which contain the supported parameters list. All parameters defined
should be rooted in the components field. Parameters which can be used in the path will be identified by
{NAME} and will get a specific section for its definition:

• type: nature of the parameter (i.e. string)

• title: parameter title

• abstract: parameter description

• in: where the parameter can be used (ie. path, header, query)

• required: define if the parameter is optional (false) or not (true)

• example: (optional) provide an example value / URL

In addition to the sections defined previously, there are three other sections that we did not cover yet.
Theses sections are:

• [requestBody]: defining the request body abstract (description), type (application/json) and
schema (reference).

• [exception]: defining the exception bastract (description), type (application/json) and schema (ref-
erence).

• [conformTo]: referring to links list of the requirements classes the server implements and conforms
to

For more information on how to interact with this WPS REST Binding, please refer to this page25 or use the
Swagger UI26. A live instance is available here27.

3.3 Optional MapServer support

Processing geospatial data using WPS Services is usefull. Publishing their results directly as WMS, WFS
or WCS ressources is even more convenient. This is possible since ZOO-Project 1.328 using the optional
MapServer support. The latter thus allows for automatic publication of WPS Service output as WMS/WFS
or WCS using a ZOO-Kernel specific internal mechanism which is detailed in this section.

25https://github.com/opengeospatial/wps-rest-binding#overview
26https://swagger.io/tools/swagger-ui/
27https://demo.mapmint.com/swagger-ui/dist/
28http://zoo-project.org

32 Chapter 3. ZOO-Kernel

https://github.com/opengeospatial/wps-rest-binding#overview
https://swagger.io/tools/swagger-ui/
https://demo.mapmint.com/swagger-ui/dist/
http://zoo-project.org

ZOO-Project Documentation, Release 1.8

Note: MapServer29 is an open source WMS/WFS/WCS server. Learn more by reading
its documentation30.

3.3.1 How does it work ?

If a request with mimeType=image/png is sent to ZOO-Kernel, the latter will detect that the useMapServer
option is set to true an it will automatically:

• Execute the service using the <Default> block definition (these values must be understood by GDAL31)

• Store the resulting output on disk (in the [main] > dataPath directory)

• Write a mapfile32 (in the [main] > dataPath directory) using the MapServer33 C-API (this sets up
both WMS and WFS services).

Existing WPS Services source code doesn’t need to be modified once the MapServer support is activated. It
only takes to edit their respective ZOO-Service configuration file files accordingly.

Note: In case of a vector data source output, both WMS and WFS configuration are included by default in
the resulting mapfile.

Note: In case of a raster data source output, both WMS and WCS configuration are included by default in
the resulting mapfile.

Depending on the requests, ZOO-Kernel is able to return a location header and different request types:

• ResponseDocument=XXXX@asReference=true34

In this case, ZOO-Kernel will return the GetMap/GetFeature/GetCoverage request as KVP in the href of
the result.

• ResponseDocument=XXXX@asReference=false35

In this case, ZOO-Kernel will return the result of the GetMap/GetFeature/GetCoverage request as KVP of
the href used in the previous case.

• RawDataOutput=XXXX@asReference=true/false36

In this case, ZOO-Kernel will return the GetMap/GetFeature/GetCoverage request as KVP in a specific
location header, which implies that the browser is supposed to request MapServer directly.

Whatever the default output mimeType returned by a WPS service is, it is used if the useMapserver option is
found at runtime. As an example, if <Default> and <Supported> blocks are found in the ZOO Service
configuration file as shown bellow, this means that the service returns GML 3.1.0 features by default.

29http://mapserver.org
30http://mapserver.org/documentation.html
31http:/gdal.org
32http://mapserver.org/mapfile/index.html
33http://mapserver.org
34ResponseDocument=XXXX@asReference=true
35ResponseDocument=XXXX@asReference=false
36RawDataOutput=XXXX@asReference=true/false

3.3. Optional MapServer support 33

http://mapserver.org
http://mapserver.org/documentation.html
http:/gdal.org
http://mapserver.org/mapfile/index.html
http://mapserver.org
mailto:ResponseDocument=XXXX@asReference=true
mailto:ResponseDocument=XXXX@asReference=false
mailto:RawDataOutput=XXXX@asReference=true/false

ZOO-Project Documentation, Release 1.8

<Default>
mimeType = text/xml
encoding = UTF-8
schema = http://schemas.opengis.net/gml/3.1.0/base/feature.xsd

</Default>
<Supported>
mimeType = image/png
useMapserver = true

</Supported>

3.3.2 Installation and configuration

Follow the step described bellow in order to activate the ZOO-Project optional MapServer support.

Prerequisites

• latest ZOO-Kernel37 trunk version

• MapServer38 version >= 6.0.1

First download the lastest zoo-kernel by checking out the svn. Use the following command from do the
directory where your previously checked out (in this example we will use $PREV_SVN_CO to design this
directory).

svn checkout http://svn.zoo-project.org/svn/trunk/ $PREV_SVN_CO
cd $PREV_SVN_CO

Then uncompress the MapServer archive (ie. mapserver-6.0.1.tar.bz2) into /tmp/zoo-ms-src,
and compile it using the following command:

cd /tmp/zoo-ms-src/mapserver-6.0.1
./configure --with-ogr=/usr/bin/gdal-config --with-gdal=/usr/bin/gdal-config \

--with-proj --with-curl --with-sos --with-wfsclient --with-wmsclient \
--with-wcs --with-wfs --with-postgis --with-kml=yes --with-geos \
--with-xml --with-xslt --with-threads --with-cairo

make
cp mapserv /usr/lib/cgi-bin

Once done, compile ZOO-Kernel with MapServer support from the $PREV_SVN_CO directory, using the
following command:

cd zoo-kernel
autoconf
./configure --with-python --with-mapserver=/tmp/zoo-ms-src/mapserver-6.0.1
make
sudo make install

Main configuration file

Open and edit the /usr/lib/cgi-bin/main.cfg file, by adding the following content in the [main]
section:

37http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
38http://mapserver/org

34 Chapter 3. ZOO-Kernel

http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
http://mapserver/org

ZOO-Project Documentation, Release 1.8

dataPath = /var/www/temp/
mapserverAddress=http://localhost/cgi-bin/mapserv

You can also add the following lines to the [main] section, in case you want to use a default style for
Polygon, Lines and Points vector layer.

msStylePoly=STYLE COLOR 202 109 19 OUTLINECOLOR 105 105 105 WIDTH 3 END
msStyleLine=STYLE OUTLINECOLOR 202 109 19 WIDTH 3 END
msStylePoint=STYLE COLOR 202 109 19 OUTLINECOLOR 105 105 105 SYMBOL 0 SIZE 14 END

The dataPath directory is mandatory and must belong to the Apache user.

mkdir /var/www/temp/
chown -r apache:apache /var/www/temp/

A symbols.sym file is required in this directory. Create it and add the following content in it:

SYMBOLSET
SYMBOL

NAME "circle"
TYPE ellipse
FILLED true
POINTS
1 1

END
END
END

Note: Only one symbol definition is required (with any name) for the WMS service output.

The ZOO-Project optional MapServer support is activated at this step. Don’t forget to add the
mapserverAddress and msOgcVersion parameters to the main.cfg file in order to to specify the path
to MapServer and the OGC WebService version used by the Services.

Warning: ZOO-kernel will segfault (checking NULL value should correct this behavior) if the
mapserverAddress parameter is not found

Service configuration file

useMapserver

In order to activate the MapServer WMS/WFS/WCS output for a specific service, the useMapserver
parameter must be added to the <Default> or <Supported> blocks of the Service services-zcfg. If
useMapserver=true, this means that the output result of the Service is a GDAL compatible datasource
and that you want it to be automatically published by MapServer as WMS,WFS or WCS.

When the useMapserver option is used in a <Default> or <Supported> block, then you have to know
what are the corresponding mimeType:

• text/xml: Implies that the output data will be accessible through a WFS GetFeature request (default
protocol version 1.1.0)

• image/tiff: Implies that the output data will be accessible through a WCS GetCoverage request (de-
fault protocol version 2.0.0)

3.3. Optional MapServer support 35

ZOO-Project Documentation, Release 1.8

• any other mimeType coupled with useMapserver option: Implies that the output data will be acces-
sible through a WMS GetMap request (default protocol version 1.3.0). You can check the supported
output mimeType by sending a GetCapabilities request to MapServer.

You get the same optional parameter msOgcVersion as for the main.cfg. This will specify that this is the
specific protocol version the service want to use (so you may set also locally to service rather than globally).

Styling

You have different options to define the style of the layer created using the data returned by your service.

msStyle The optional msStyle parameter can also be used to define a custom MapServer style block
(used for vector datasource only), as follow:

msStyle = STYLE COLOR 125 0 105 OUTLINECOLOR 0 0 0 WIDTH 3 END

msClassify If a WPS service outputs a one band raster file, then it is possible to add a msClassify
parameter and set it to true in the output ComplexData <Default> or <Supported> nodes of its zcfg
file. This allows ZOO-Kernel to use its own default style definitions in order to classify the raster using
equivalent intervals.

msClassify = true

msInclude In case you want to use another layer which use the result of your service, for instance to
produce a heatmap39, then you can use the msInclude and msLayer options in the output ComplexData
<Default> or <Supported> nodes of its zcfg file. You can see below an example of use of this two options
with the associated mapfile.

msInclude = /var/data/template.map
msLayer = heatmap

You can find below a sample /var/data/template.map:

MAP
SIZE 1000 500
EXTENT -180 -90 180 90
NAME "test heat"
IMAGETYPE "png"

WEB
METADATA

"ows_srs" "epsg:4326 epsg:3857 epsg:900913"
"ows_enable_request" "*"

END # METADATA
END # WEB

PROJECTION
"+init=epsg:4326"

END # PROJECTION

LAYER
NAME "heatmap" # Corresponding to the msLayer defined
TYPE raster

39https://mapserver.org/output/kerneldensity.html

36 Chapter 3. ZOO-Kernel

https://mapserver.org/output/kerneldensity.html

ZOO-Project Documentation, Release 1.8

CONNECTIONTYPE kerneldensity
CONNECTION "Result"
STATUS on
PROCESSING "RANGE_COLORSPACE=HSL"
PROCESSING "KERNELDENSITY_RADIUS=20"
PROCESSING "KERNELDENSITY_COMPUTE_BORDERS=ON"
PROCESSING "KERNELDENSITY_NORMALIZATION=AUTO"
OFFSITE 0 0 0
CLASS

STYLE
COLORRANGE "#0000ff00" "#0000ffff"
DATARANGE 0 32

END # STYLE
STYLE

COLORRANGE "#0000ffff" "#ff0000ff"
DATARANGE 32 255

END # STYLE
END # CLASS

END # LAYER

LAYER
NAME "points"
STATUS on
TYPE POINT
#DATA "/Library/WebServer/cache//ef76ee6642c1ea704e847e28120ba1ca.zca"

END # LAYER
END # MAPFILE

Example

An example ZOO-Service configuration file file configured for the optional MapServer support is shown
bellow:

<Default>
mimeType = text/xml
encoding = UTF-8
schema = http://schemas.opengis.net/gml/3.1.0/base/feature.xsd
useMapserver = true

</Default>
<Supported>
mimeType = image/png
useMapserver = true
asReference = true
msStyle = STYLE COLOR 125 0 105 OUTLINECOLOR 0 0 0 WIDTH 3 END

</Supported>
<Supported>
mimeType = application/vnd.google-earth.kmz
useMapserver = true
asReference = true
msStyle = STYLE COLOR 125 0 105 OUTLINECOLOR 0 0 0 WIDTH 3 END

</Supported>
<Supported>
mimeType = image/tif
useMapserver = true
asReference = true
msClassify = true

</Supported>

3.3. Optional MapServer support 37

ZOO-Project Documentation, Release 1.8

In this example, the default output mimeType is image/png, so a WMS GetMap request will be returned,
or the resulting image/tiff will be returned as WCS GetCoverage request.

3.3.3 Test requests

The optional MapServer support can be tested using any service. The simple HelloPy Service is used in the
following example requests.

Note: The following examples require a zip file containing a Shapefile (http://localhost/data/data.zip)
and a tif file (http://localhost/data/demo.tif)

Accessing a remote Zipped Shapefile as WFS GetFeatures Request:

http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=HelloPy&DataInputs=a=Reference@xlink:href=http://localhost/data/data.zip&ResponseDocument=Result@asReference=true@mimetype=text/xml

Accessing a remote Zipped Shapefile as WMS GetMap Request:

http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=HelloPy&DataInputs=a=Reference@xlink:href=http://localhost/data/data.zip&ResponseDocument=Result@asReference=true@mimetype=image/png

Accessing a remote tiff as WMS GetMap Request:

http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=HelloPy&DataInputs=a=Reference@xlink:href=http://localhost/data/data.tiff&ResponseDocument=Result@asReference=true@mimetype=image/png

Accessing a remote tiff as WCS GetMap Request:

http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=HelloPy&DataInputs=a=Reference@xlink:href=http://localhost/data/data.tiff&ResponseDocument=Result@asReference=true@mimetype=image/tiff

3.4 Optional Orfeo Toolbox support

Orfeo Toolbox40 provides simple to advanced algorithms for processing imagery available from remote
sensors. The optional Orfeo Toolbox support is available since ZOO-Project 1.541. It allows to execute the
OTB Applications42 directly as ZOO WPS Services thanks to a ZOO-Kernel specific internal mechanism
which is detailed in this section.

Note: Orfeo Toolbox43 is an open source image processing library. Learn more by reading its
documentation44.

3.4.1 Installation and configuration

Follow the step described bellow in order to activate the ZOO-Project optional Orfeo Toolbox support.

Prerequisites

• latest ZOO-Kernel45 trunk version
40http://orfeo-toolbox.org/otb/
41http://zoo-project.org
42http://orfeo-toolbox.org/otb/otb-applications.html
43https://www.orfeo-toolbox.org
44https://www.orfeo-toolbox.org/documentation/
45http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel

38 Chapter 3. ZOO-Kernel

http://localhost/data/data.zip
http://localhost/data/demo.tif
http://orfeo-toolbox.org/otb/
http://zoo-project.org
http://orfeo-toolbox.org/otb/otb-applications.html
https://www.orfeo-toolbox.org
https://www.orfeo-toolbox.org/documentation/
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel

ZOO-Project Documentation, Release 1.8

• Orfeo Toolbox (OTB 4.2.146)

• Insight Segmentation and Registration Toolkit (ITK-4.747)

Installation steps

Note: These installation steps were successfully tested on Ubuntu 14.4 LTS

Note: For OTB and ITK, the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS must first be set to -fPIC

Download lastest ZOO-Kernel code from SVN.

svn checkout http://svn.zoo-project.org/svn/trunk/zoo-kernel zoo-kernel

Then compile ZOO-Kernel using the needed configuration options as shown bellow:

cd zoo-kernel
autoconf
./configure --with-otb=/usr/local --with-itk=/usr/local --with-itk-version=4.7
make
cp zoo_loader.cgi /usr/lib/cgi-bin

Configuration steps

Main configuration file

Add the following content to your /usr/lib/cgi-bin/main.cfg file in the [env] section:

ITK_AUTOLOAD_PATH=/usr/local/lib/otb/applications

Services configuration file

The build of the otb2zcfg48 utility is required to activate the available OTB Applications as WPS services.
This can be done using the following command:

mkdir build
cd build
ccmake ..
make

Run the following command to generate all the needed zcfg files for the available OTB Application:

mkdir zcfgs
cd zcfgs
export ITK_AUTOLOAD_PATH=/your/path/to/otb/applications
../build/otb2zcfg
mkdir /location/to/your/cgi-bin/OTB
cp *zcfg /location/to/your/cgi-bin/OTB

46http://orfeo-toolbox.org/otb/
47http://itk.org/ITK/resources/software.html/
48http://zoo-project.org/trac/browser/trunk/thirds/otb2zcfg

3.4. Optional Orfeo Toolbox support 39

http://orfeo-toolbox.org/otb/
http://itk.org/ITK/resources/software.html/
http://zoo-project.org/trac/browser/trunk/thirds/otb2zcfg

ZOO-Project Documentation, Release 1.8

Test requests

Once done, OTB Applications should be listed as available WPS Services when runing a GetCapabilities
request

http://localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS

Each OTB Service can then be described individually using the DescribeProcess request, as for example:

http://localhost/cgi-bin/zoo_loader.cgi?request=DescribeProcess&service=WPS&version=1.0.0&Identifier=OTB.BandMath

Here is an example request executing the OTB.BandMath Application with the OTB Cookbook49 sample
data as input

http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=OTB.BandMath&DataInputs=il=Reference@xlink:href=http://hg.orfeo-toolbox.org/OTB-Data/raw-file/ca154074b282/Examples/verySmallFSATSW.tif;il=Reference@xlink:href=http://hg.orfeo-toolbox.org/OTB-Data/raw-file/ca154074b282/Examples/verySmallFSATSW_nir.tif;out=float;exp=im1b3*cos%28im1b1%29,im1b2*cos%28im1b1%29,im1b1*cos%28im1b1%29&RawDataOutput=out@mimeType=image/png

Note: The usual ZOO GetStatus requests also work when using the OTB Applications as WPS Services.

3.5 Optional SAGA GIS support

SAGA GIS50 provides a comprehensive set of geoscientific methods and spatial algorithms. The optional
SAGA GIS support is available since ZOO-Project 1.551. It allows to execute the SAGA Modules52 directly
as ZOO WPS Services thanks to a ZOO-Kernel specific internal mechanism which is detailed in this section.

Note: SAGA GIS53 is the System for Automated Geoscientific Analyses. Learn more on official
website54.

3.5.1 Installation and configuration

Follow the step described bellow in order to activate the ZOO-Project optional SAGA GIS support.

Prerequisites

• latest ZOO-Kernel55 trunk version

• SAGA GIS56 (7.2.0)
49https://www.orfeo-toolbox.org/CookBook/CookBook.html
50http://www.saga-gis.org/
51http://zoo-project.org
52http://www.saga-gis.org/saga_module_doc/2.1.4/index.html
53http://www.saga-gis.org/
54http://www.saga-gis.org/en/index.html
55http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
56http://saga-gis.org

40 Chapter 3. ZOO-Kernel

https://www.orfeo-toolbox.org/CookBook/CookBook.html
http://www.saga-gis.org/
http://zoo-project.org
http://www.saga-gis.org/saga_module_doc/2.1.4/index.html
http://www.saga-gis.org/
http://www.saga-gis.org/en/index.html
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
http://saga-gis.org

ZOO-Project Documentation, Release 1.8

Installation steps

Compile ZOO-Kernel using the configuration options as shown bellow:

cd zoo-kernel
autoconf
./configure --with-saga=/usr/local/ --with-saga-version=7
make

And copy the newly created zoo_loader.cgi to /usr/lib/cgi-bin.

Note: The --with-saga-version option let you set the major version number of SAGA-GIS.

cp zoo_loader.cgi /usr/lib/cgi-bin

Configuration steps

Services configuration file

Building the saga2zcfg57 utility is required to activate the available SAGA-GIS Modules as WPS Services.
This can be done using the following command:

cd thirds/saga2zcfg
make

The following commands will then generate all the needed zcfg files for the available SAGA-GIS Modules:

mkdir zcfgs
cd zcfgs
../saga2zcfg
mkdir /location/to/your/cgi-bin/SAGA
cp *zcfg /location/to/your/cgi-bin/SAGA

Test requests

The SAGA-GIS Modules should be listed as available WPS Services when runing a GetCapabilities request,
as follow:

http://localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS

Each SAGA-GIS Service can then be described individually using the DescribeProcess request, as for exam-
ple:

http://localhost/cgi-bin/zoo_loader.cgi?request=DescribeProcess&service=WPS&version=1.0.0&Identifier=SAGA.garden_fractals.1

And executed according to your needs. The following example executes SAGA.garden_fractals.1 with no
optional parameter:

http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=SAGA.garden_fractals.1&DataInputs=&ResponseDocument=RESULT@mimeType=application/json@asReference=true

Note: The common ZOO GetStatus requests also work when using the SAGA-GIS Modules as WPS Ser-
vices.

57http://zoo-project.org/trac/browser/trunk/thirds/saga2zcfg

3.5. Optional SAGA GIS support 41

http://zoo-project.org/trac/browser/trunk/thirds/saga2zcfg
http://localhost/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS
http://localhost/cgi-bin/zoo_loader.cgi?request=DescribeProcess&service=WPS&version=1.0.0&Identifier=SAGA.garden_fractals.1
http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=SAGA.garden_fractals.1&DataInputs=&ResponseDocument=RESULT@mimeType=application/json@asReference=true

ZOO-Project Documentation, Release 1.8

3.6 Optional HPC support

The optional ZOO-Kernel HPC support gives you the opportunity to use OGC WPS for invoking remote
execution of OTB applications. The current implementation rely on OpenSSH58 and the Slurm59 scheduler.

Note: Slurm60 is an acronym for Simple Linux Utility for Resource Management. Learn more on official
website61.

For executing an OGC WPS Service using this HPC support, one should use the OGC WPS version 2.0.0
and asynchornous request. Any tentative to execute synchronously a HPC service will fail with the mes-
sage “The synchronous mode is not supported by this type of service”. The ZOO-Kernel is not the only
responsible for the execution and will wait for the execution on the HPC server to end before being able to
continue its execution. Also, transfering the data from the WPS server to the cluster and downloading the
data produced by the execution will take time. Hence, when OGC WPS Client will request for GetCapabil-
ities or DescribeProcess only the “async-execute” mode will be present in the jobControlOptions attribute
for the HPC services.

You can see in the sequence diagram below the interactions between the OGC WPS Server (ZOO-Kernel),
the mail daemon (running on the OGC WPS server), the Callback Service and, the HPC Server during an
execution of a HPC Service. The dashed lines represent the behavior in case the optional callback service
invocation has been activated. These invocations are made asynchronously for lowering their impact over
the whole process in case of failure of the callback service for instance.

By now, the callback service is not a WPS service but an independent server.

3.6.1 Installation and configuration

Follow the step described below in order to activate the ZOO-Project optional HPC support.

Prerequisites

• latest ZOO-Kernel62 trunk version

• libssh263

• MapServer64

• an access to a server with Slurm65 and OrfeoToolBox66.

Installation steps

ZOO-Kernel

Compile ZOO-Kernel using the configuration options as shown below:
58https://www.openssh.com/
59http://slurm.schedmd.com/
60http://slurm.schedmd.com/
61https://slurm.schedmd.com/overview.html
62http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
63https://www.libssh2.org/
64http://www.mapserver.org
65http://slurm.schedmd.com
66https://www.orfeo-toolbox.org

42 Chapter 3. ZOO-Kernel

https://www.openssh.com/
http://slurm.schedmd.com/
http://slurm.schedmd.com/
https://slurm.schedmd.com/overview.html
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-kernel
https://www.libssh2.org/
http://www.mapserver.org
http://slurm.schedmd.com
https://www.orfeo-toolbox.org

ZOO-Project Documentation, Release 1.8

cd zoo-kernel
autoconf
./configure --with-hpc=yes --with-ssh2=/usr --with-mapserver=/usr --with-ms-version=7
make
sudo make install

Optionally, you can ask your ZOO-Kernel to invoke a callback service which is responsible to record exe-
cution history and data produced. In such a case you can add the --with-callback=yes option to the
configure command.

Note: In case you need other languages to be activated, such as Python for exemple, please use the corre-
sponding option(s).

FinalizeHPC WPS Service

For being informed that the remote OTB application ends on the cluster, one should invoke the FinalizeHPC
service. It is responsible to connect using SSH to the HPC server to run an sacct command for extracting
detailled informations about the sbatch that has been run. If the sacct command succeed, and the service
is no more running on the cluster, then the informations are stored in a local conf file containing a [henv]
section definition, the service connect to unix domain socket (opened by the ZOO-Kernel that has initially
schedduled the service through Slurm) to inform about the end of the service run on the cluster. This makes
the initial ZOO-Kernel to continue its execution by downloading output data produced over the execution
of the OTB application on the cluster. So, this service should be build and deployed on your WPS server.
You can use the following commands to do so.

cd zoo-service/utils/hpc
make
cp cgi-env/* /usr/lib/cgi-bin
mkdir -p /var/data/xslt/
cp xslt/updateExecute.xsl /var/data/xslt/

You should also copy the .. note:

FinalizeHPC should be called from a daemon, responsible for reading
mails sent by the cluster to the WPS server.

Configuration steps

Main configuration file

When HPC support is activated, you can use different HPC configuration by adding confId to your usual
serviceType=HPC in your zcfg file. For being able to find which configuration a service should use, the
ZOO-Kernel require to know what are the options for creating the relevant sbatch.

Also, you can define multiple configuration to run the OTB application on the cluster(s) depending on
the size of the inputs. You should define in the section corresponding to your ServiceType the treshold
for both raster (preview_max_pixels) and vector (preview_max_features) input. In case the raster
or the vector dataset is upper the defined limit, then the fullres_conf will be used, in other case the
preview_conf will be.

For each of this configurations, you will have define the parameters to connect the HPC server, by pro-
viding ssh_host, ssh_port, ssh_user and, ssh_key. Also, you should set where the input data
will be stored on the HPC server, by defining remote_data_path (the default directory to store data),
remote_presistent_data_path (the directory to store data considerated as shared data, see below)

3.6. Optional HPC support 43

ZOO-Project Documentation, Release 1.8

and, remote_work_path the directory used to store the SBATCH script created locally then, uploaded by
the ZOO-Kernel.

Also, there are multiple options you can use to run your applications using SBATCH. You can
define them using jobscript_header, jobscript_body and jobscript_footer or by using
sbatch_options_<SBATCH_OPTION> where <SBATCH_OPTION> should be replaced by a real option
name, like workdir in the following example. For creating the SBATCH file, the ZOO-Kernel create a
file starting with the content of the file pointed by jobscript_header (if any, a default header is set
in other case), then, any option defined in sbatch_options_* and a specific one: job-name, then,
jobscript_body is added (if any, usually to load required modules), then the ZOO-Kernel add the invo-
cation of the OTB application then, optionally the jobscript_footer is added, if any.

Finally, remote_command_opt should contains all the informations you want to be extracted by the
sacct command run by the FinalizeHPC service. billing_nb_cpu is used for billing purpose to de-
fine a cost for using a specific option (preview or fullres).

In addition to the specific HPC_<ID> section and the corresponding fullres and preview ones, you should
define in the [security] section using the shared parameter to set the URLs from where the down-
loaded data should be considerated as shared, meaning that even if this ressources requires authentication
to be accessed, any authenticated user will be allowed to access the cache file even if it was created by some-
body else. Also, this shared cache won’t contain any authentication informations in the cache file name as
it is usually the case.

[HPC_Sample]
preview_max_pixels=820800
preview_max_features=100000
preview_conf=hpc-config-2
fullres_conf=hpc-config-1

[hpc-config-1]
ssh_host=mycluster.org
ssh_port=22
ssh_user=cUser
ssh_key=/var/www/.ssh/id_rsa.pub
remote_data_path=/home/cUser/wps_executions/data
remote_persitent_data_path=/home/cUser/wps_executions/datap
remote_work_path=/home/cUser/wps_executions/script
jobscript_header=/usr/lib/cgi-bin/config-hpc1_header.txt
jobscript_body=/usr/lib/cgi-bin/config-hpc1_body.txt
sbatch_options_workdir=/home/cUser/wps_executions/script
sbatch_substr=Submitted batch job
billing_nb_cpu=1
remote_command_opt=AllocCPUS,AllocGRES,AllocNodes,AllocTRES,Account,AssocID,AveCPU,AveCPUFreq,AveDiskRead,AveDiskWrite,AvePages,AveRSS,AveVMSize,BlockID,Cluster,Comment,ConsumedEnergy,ConsumedEnergyRaw,CPUTime,CPUTimeRAW,DerivedExitCode,Elapsed,Eligible,End,ExitCode,GID,Group,JobID,JobIDRaw,JobName,Layout,MaxDiskRead,MaxDiskReadNode,MaxDiskReadTask,MaxDiskWrite,MaxDiskWriteNode,MaxDiskWriteTask,MaxPages,MaxPagesNode,MaxPagesTask,MaxRSS,MaxRSSNode,MaxRSSTask,MaxVMSize,MaxVMSizeNode,MaxVMSizeTask,MinCPU,MinCPUNode,MinCPUTask,NCPUS,NNodes,NodeList,NTasks,Priority,Partition,QOS,QOSRAW,ReqCPUFreq,ReqCPUFreqMin,ReqCPUFreqMax,ReqCPUFreqGov,ReqCPUS,ReqGRES,ReqMem,ReqNodes,ReqTRES,Reservation,ReservationId,Reserved,ResvCPU,ResvCPURAW,Start,State,Submit,Suspended,SystemCPU,Timelimit,TotalCPU,UID,User,UserCPU,WCKey,WCKeyID

[hpc-config-2]
ssh_host=mycluster.org
ssh_port=22
ssh_user=cUser
ssh_key=/var/www/.ssh/id_rsa.pub
remote_data_path=/home/cUser/wps_executions/data
remote_persitent_data_path=/home/cUser/wps_executions/datap
remote_work_path=/home/cUser/wps_executions/script
jobscript_header=/usr/lib/cgi-bin/config-hpc2_header.txt
jobscript_body=/usr/lib/cgi-bin/config-hpc2_body.txt
sbatch_options_workdir=/home/cUser/wps_executions/script
sbatch_substr=Submitted batch job
billing_nb_cpu=4
remote_command_opt=AllocCPUS,AllocGRES,AllocNodes,AllocTRES,Account,AssocID,AveCPU,AveCPUFreq,AveDiskRead,AveDiskWrite,AvePages,AveRSS,AveVMSize,BlockID,Cluster,Comment,ConsumedEnergy,ConsumedEnergyRaw,CPUTime,CPUTimeRAW,DerivedExitCode,Elapsed,Eligible,End,ExitCode,GID,Group,JobID,JobIDRaw,JobName,Layout,MaxDiskRead,MaxDiskReadNode,MaxDiskReadTask,MaxDiskWrite,MaxDiskWriteNode,MaxDiskWriteTask,MaxPages,MaxPagesNode,MaxPagesTask,MaxRSS,MaxRSSNode,MaxRSSTask,MaxVMSize,MaxVMSizeNode,MaxVMSizeTask,MinCPU,MinCPUNode,MinCPUTask,NCPUS,NNodes,NodeList,NTasks,Priority,Partition,QOS,QOSRAW,ReqCPUFreq,ReqCPUFreqMin,ReqCPUFreqMax,ReqCPUFreqGov,ReqCPUS,ReqGRES,ReqMem,ReqNodes,ReqTRES,Reservation,ReservationId,Reserved,ResvCPU,ResvCPURAW,Start,State,Submit,Suspended,SystemCPU,Timelimit,TotalCPU,UID,User,UserCPU,WCKey,WCKeyID

44 Chapter 3. ZOO-Kernel

ZOO-Project Documentation, Release 1.8

[security]
attributes=Cookie,Cookies
hosts=*
shared=myhost.net/WCS

You can see below an example of jobscript_header file.

#!/bin/sh
#SBATCH --ntasks=1
#SBATCH --ntasks-per-node=1
#SBATCH --exclusive
#SBATCH --distribution=block:block
#SBATCH --partition=partName
#SBATCH --mail-type=END # Mail events (NONE, BEGIN, END, FAIL, ALL)
#SBATCH --mail-user=user@wps_server.net # Where to send mail

You can see below an example of jobscript_body file.

Load all the modules
module load cv-standard
module load cmake/3.6.0
module load gcc/4.9.3
module load use.own
module load OTB/6.1-serial-24threads

In casse you have activated the callback service, then you should also have a [callback] section, in which
you will define url to invoke the callback service, prohibited to list the services that should not require
invocation of the callback sercvice if any and, template pointing to the local updateExecute.xsl file
used to replace any inputs provided by value to the reference to the locally published OGC WFS/WCS web
services. This execute request is provided to the callback service.

[callback]
url=http://myhost.net:port/callbackUpdate/
prohibited=FinalizeHPC,Xml2Pdf,DeleteData
template=/home/cUser/wps_dir/updateExecute.xsl

OGC WPS Services metadata

To produce the zcfg files corresponding to the metadata definition of the WPS services, you can use the
otb2zcfg tool to produce them. You will need to replace serviceType=OTB by serviceType=HPC and,
optionally, add one line containing confId=HPC_Sample for instance.

Please refer to otb2zcfg documentation to know how to use this tool.

Using the HPC support, when you define one output, there will be automatically 1 to 3 inner outputs
created for the defined output:

download_link URL to download to generated output

wms_link URL to access the OGC WMS for this output (only in case useMapserver=true)

wcs_link/wfs_link URL to access the OGC WCS or WFS for this output (only in case useMapserver=true)

You can see below an example of Output node resulting of the definition of one output named out and
typed as geographic imagery.

<wps:Output>
<ows:Title>Outputed Image</ows:Title>
<ows:Abstract>Image produced by the application</ows:Abstract>

3.6. Optional HPC support 45

ZOO-Project Documentation, Release 1.8

<ows:Identifier>out</ows:Identifier>
<wps:Output>
<ows:Title>Download link</ows:Title>
<ows:Abstract>The download link</ows:Abstract>
<ows:Identifier>download_link</ows:Identifier>
<wps:ComplexData>

<wps:Format default="true" mimeType="image/tiff"/>
<wps:Format mimeType="image/tiff"/>

</wps:ComplexData>
</wps:Output>
<wps:Output>
<ows:Title>WMS link</ows:Title>
<ows:Abstract>The WMS link</ows:Abstract>
<ows:Identifier>wms_link</ows:Identifier>
<wps:ComplexData>

<wps:Format default="true" mimeType="image/tiff"/>
<wps:Format mimeType="image/tiff"/>

</wps:ComplexData>
</wps:Output>
<wps:Output>
<ows:Title>WCS link</ows:Title>
<ows:Abstract>The WCS link</ows:Abstract>
<ows:Identifier>wcs_link</ows:Identifier>
<wps:ComplexData>

<wps:Format default="true" mimeType="image/tiff"/>
<wps:Format mimeType="image/tiff"/>

</wps:ComplexData>
</wps:Output>

</wps:Output>

46 Chapter 3. ZOO-Kernel

CHAPTER

FOUR

ZOO-SERVICES

This section will guide you for creating your own WPS Services using the ZOO-Project1 platform. It also
gives usefull information for taking advantage of the ready-to-use ZOO-Services which are available in the
ZOO-Project svn.

4.1 What are ZOO-Services ?

ZOO-Services are WPS compliant Web Services working with ZOO-Kernel, the ZOO-Project2 WPS server.

4.1.1 What is a ZOO-Service?

A ZOO Service is a couple composed of:

• Source code you want to create or reuse as WPS Service

• A configuration file (.zcfg) which describes this WPS Service

Learn how to create your own and how to configure ZOO-Services according to the ZCFG Reference.

4.1.2 Available ZOO-Services

ZOO-Project3 includes ready-to-use WPS Services based on reliable open source libraries such as GDAL4,
GRASS GIS5, OrfeoToolbox6 and CGAL7. The so-called ZOO-Services aim at reusing existing geospatial
algorithms through standard WPS, with no or minor modification of the involved software or library source
codes.

Available ZOO-Services provide a number of significant examples to build your own.

4.2 ZOO-Service configuration file

The ZOO-Service configuration file (.zcfg) describes a WPS service. It provides metadata information on a
particular WPS Service and it is parsed by ZOO-Kernel when DescribeProcess and Execute request are sent.

1http://zoo-project.org
2http://zoo-project.org
3http://zoo-project.org
4http://gdal.org
5http://grass.osgeoorg
6http://orfeo-toolbox.org
7http://gcal.org

47

http://zoo-project.org
http://zoo-project.org
http://zoo-project.org
http://gdal.org
http://grass.osgeoorg
http://orfeo-toolbox.org
http://gcal.org

ZOO-Project Documentation, Release 1.8

The ZOO-Service configuration file is divided into three distinct sections :

• Main Metadata information

• List of Inputs metadata information (optional since rev. 4698)

• List of Outputs metadata information

Warning: The ZOO-Service configuration file is case sensitive.

Note: There are many example ZCFG files in the cgi-env directory of the ZOO-Project svn9.

Note: A ZCFG file can be converted to the YAML syntaxe by using the zcfg2yaml command line tool.

4.2.1 Main section

The fist part of the ZOO-Service configuration file is the main section, which contains general metadata
information on the related WPS Service.

Note that the “name of your service” between brackets on the first line has to be the exact same name as the
function you defined in your services provider code. In most cases, this name is also the name of the ZCFG
file without the “.zcfg” extension.

An example of the main section is given bellow as reference.

1 [Name of WPS Service]
2 Title = Title of the WPS Service
3 Abstract = Description of the WPS Service
4 processVersion = Version number of the WPS Service
5 storeSupported = true/false
6 statusSupported = true/false
7 serviceType = Pprogramming language used to implement the service (C|Fortran|Python|Java|PHP|Ruby|Javascript)
8 serviceProvider = Name of the Services provider (shared library|Python Module|Java Class|PHP Script|JavaScript Script)
9 <MetaData>

10 title = Metadata title of the WPS Service
11 </MetaData>

Warning: ‘Name of WPS Service’ must be the exact same name as the function defined in the WPS
Service source code.

Note: An extend parameter may be used for the Process profile registry.

4.2.2 List of Inputs

The second part of the ZOO-Service configuration file is the <DataInputs> section which lists the sup-
ported inputs. Each input is defined as :

• Name (between brackets as for the name of the service before)

• Various medata properties (Title, Abstract, minOccurs, maxOccurs and, in case of Complex-
Data, the optional maximumMegabytes)

8http://zoo-project.org/trac/changeset/469
9http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services

48 Chapter 4. ZOO-Services

http://zoo-project.org/trac/changeset/469
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services

ZOO-Project Documentation, Release 1.8

• Type Of Data Node

A typical list of inputs (<DataInputs>) looks like the following:

1 <DataInputs>
2 [Name of the first input]
3 Title = Title of the first input
4 Abstract = Abstract describing the first input
5 minOccurs = Minimum occurence of the first input
6 maxOccurs = Maximum occurence of the first input
7 <Type Of Data Node />
8 [Name of the second input]
9 Title = Title of the second input

10 Abstract = Abstract describing the second input
11 minOccurs = Minimum occurence of the second input
12 maxOccurs = Maximum occurence of the second input
13 <Type Of Data Node />
14 </DataInputs>

Note: A <MetaData> node can also be added, as in the main metadata information.

4.2.3 List of Outputs

The third part of the ZOO Service configuration file is the <DataOutputs> section, which lists the sup-
ported outputs and is is very similar to a list of inputs.

A typical list of outputs (<DataOutputs>) looks like the following:

1 <DataOutputs>
2 [Name of the output]
3 Title = Title of the output
4 Abstract = Description of the output
5 <Type Of Data Node />
6 </DataOutputs>

4.2.4 Type Of Data Nodes

The Type Of Data Nodes describes data types for inputs and outputs. There are three different types which
are described in this section.

• LiteralData

• BoundingBoxData

• ComplexData

Warning: Every BoundingBoxData and ComplexData must have at least one <Default> node
(even empty like <Default />)

Warning: In WPS 2.0.0 version, it is possible to define nested inputs and outputsa. So, from
revision 790b, you are allowed to use a new input/output definition here.

ahttp://docs.opengeospatial.org/is/14-065/14-065.html#13
bhttp://www.zoo-project.org/trac/changeset/790

4.2. ZOO-Service configuration file 49

http://docs.opengeospatial.org/is/14-065/14-065.html#13
http://www.zoo-project.org/trac/changeset/790

ZOO-Project Documentation, Release 1.8

LiteralData node

A <LiteralData> node contains:

• one (optional) AllowedValues key containing all value allowed for this input

• one (optional) range properties containing the range ([,])

• one (optional) rangeMin (rangeMax) properties containing the minimum (maximum) value of this
range

• one (optional) rangeSpacing properties containing the regular distance or spacing between value
in this range

• one (optional) rangeClosure properties containing the closure type (c, o, oc, co)

• one <Default> node,

• zero or more <Supported> nodes depending on the existence or the number of supported Units Of
Measure (UOM), and

• a dataType property. The dataType property defines the type of literal data, such as a string, an
interger and so on (consult the complete list10 of supported data types).

<Default> and <Supported> nodes can contain the uom property to define which UOM has to be used
for this input value.

For input <LiteralData> nodes, you can add the value property to the <Default> node to define
a default value for this input. This means that, when your Service will be run, even if the input wasn’t
defined, this default value will be set as the current value for this input.

A typical <LiteralData> node, defining a float data type using meters or degrees for its UOM, looks
like the following:

1 <LiteralData>
2 dataType = float
3 <Default>
4 uom = meters
5 </Default>
6 <Supported>
7 uom = feet
8 </Supported>
9 </LiteralData>

A typical <LiteralData> node, defining a float data type which should take values contained in
[0.0,100.0], looks like the following:

1 <LiteralData>
2 dataType = float
3 rangeMin = 0.0
4 rangeMax = 100.0
5 rangeClosure = c
6 <Default />
7 </LiteralData>

Or more simply:

1 <LiteralData>
2 dataType = float
3 range = [0.0,100.0]

10http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

50 Chapter 4. ZOO-Services

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

ZOO-Project Documentation, Release 1.8

4 <Default />
5 </LiteralData>

A typical <LiteralData> node, defining a string data type which support values hillshade, slope,
aspect, TRI, TPI and roughness, looks like the following:

1 <LiteralData>
2 dataType = string
3 AllowedValues = hillshade,slope,aspect,TRI,TPI,roughness
4 <Default />
5 </LiteralData>

Properties AllowedValues and range* can be conbined with both <Default> and <Supported> nodes
in the same was as <LiteralData> node. For instance, the following is supported:

1 <LiteralData>
2 dataType = int
3 <Default>
4 value = 11
5 AllowedValues = -10,-8,-7,-5,-1
6 rangeMin = 0
7 rangeMax = 100
8 rangeClosure = co
9 </Default>

10 <Supported>
11 rangeMin = 200
12 rangeMax = 600
13 rangeClosure = co
14 </Supported>
15 <Supported>
16 rangeMin = 750
17 rangeMax = 990
18 rangeClosure = co
19 rangeSpacing = 10
20 </Supported>
21 </LiteralData>

BoundingBoxData node

A <BoundingBoxData> node contains:

• one <Default> node with a CRS property defining the default Coordinate Reference Systems (CRS),
and

• one or more <Supported> nodes depending on the number of CRS your service supports (note that
you can alternatively use a single <Supported> node with a comma-separated list of supported
CRS).

A typical <BoundingBoxData> node, for two supported CRS (EPSG:432611 and EPSG:378512), looks like
the following:

1 <BoundingBoxData>
2 <Default>
3 CRS = urn:ogc:def:crs:EPSG:6.6:4326
4 </Default>
5 <Supported>

11http://www.epsg-registry.org/indicio/query?request=GetRepositoryItem&id=urn:ogc:def:crs:EPSG::4326
12http://www.epsg-registry.org/indicio/query?request=GetRepositoryItem&id=urn:ogc:def:crs:EPSG::3785

4.2. ZOO-Service configuration file 51

http://www.epsg-registry.org/indicio/query?request=GetRepositoryItem&id=urn:ogc:def:crs:EPSG::4326
http://www.epsg-registry.org/indicio/query?request=GetRepositoryItem&id=urn:ogc:def:crs:EPSG::3785

ZOO-Project Documentation, Release 1.8

6 CRS = urn:ogc:def:crs:EPSG:6.6:4326
7 </Supported>
8 <Supported>
9 CRS = urn:ogc:def:crs:EPSG:6.6:3785

10 </Supported>
11 </BoundingBoxData>

ComplexData node

A ComplexData node contains:

• a <Default> node and

• one or more <Supported> nodes depending on the number of supported formats. A format is made
up of this set of properties : mimeType, encoding and optionaly schema.

For output ComplexData nodes, you can add the extension property to define what extension to use to
name the file when storing the result is required. Obviously, you’ll have to add the extension property
to each supported format (for the <Default> and <Supported> nodes).

You can also add the asReference property to the <Default> node to define if the output should be
stored on server side per default.

Note: the client can always modify this behavior by setting asReference attribute to true or false for
this output in the request ResponseDocument parameter.

You can see below a sample ComplexData node for default application/json and text/xml (encoded
in UTF-8 or base64) mimeTypes support:

1 <ComplexData>
2 <Default>
3 mimeType = application/json
4 encoding = UTF-8
5 </Default>
6 <Supported>
7 mimeType = text/xml
8 encoding = base64
9 schema = http://fooa/gml/3.1.0/polygon.xsd

10 </Supported>
11 <Supported>
12 mimeType = text/xml
13 encoding = UTF-8
14 schema = http://fooa/gml/3.1.0/polygon.xsd
15 </Supported>
16 </ComplexData>

4.3 Process profiles registry

WPS Services belonging to the same Services provider often share the same inputs and outputs. In such
a case, every ZCFG file would contain the same metadata information and this may be a waste of time to
write them all.

ZOO-Kernel is able to handle metadata inheritance from rev. 60713, and this solves the issue of writing many
ZCFG with same input and output. A registry can be loaded by the ZOO-Kernel (before any other ZCFG

13http://www.zoo-project.org/trac/changeset/607

52 Chapter 4. ZOO-Services

http://www.zoo-project.org/trac/changeset/607

ZOO-Project Documentation, Release 1.8

files) and contain a set of Process Profiles organized in hierarchic levels according to the following rules:

• Concept: The higher level in the hierarchy. Concepts are basic text files containing an abstract descrip-
tion of a WPS Service (see the OGC definition14 for more details).

• Generic: A Generic profile can make reference to Concepts. It defines inputs and outputs without data
format or maximum size limitation (see the OGC definition15 for more details).

• Implementation: An Implementation profile can inherit from a generic profile and make reference to
concepts (see the OGC definition16 for more details). It contains all the metadata information about a
particular WPS Service (see ZCFG reference for more information).

Both Generic and Implementation process profiles are created from ZCFG files and stored in the registry sub-
directories according to their level (Concept, Generic or Implementation).

To activate the registry, you have to add a registry key to the [main] section of your main.cfg file,
and set its value to the directory path used to store the profile ZCFG files. Please see Setup registry browser
for more details about the other services and parameters required.

Note: Even if the profile registry was first introduced in WPS 2.0.0, it can be also used in the same way for
WPS 1.0.0 Services.

4.3.1 Generic Process Profile

A Generic Process Profile is a ZCFG file located in the generic sub-directory, it defines main metadata
information, inputs and outputs name, basic metadata and multiplicity. It can make reference to a concept
by defining a concept key in the main metadata information part.

You can find below the GO.zcfg file, a typical Generic Process Profile for Generic Geographic Operation,
taking one InputPolygon input parameter and returning a result named Result, it make reference to the
GOC concept:

1 [GO]
2 Title = Geographic Operation
3 Abstract = Geographic Operation on exactly one input, returning one output
4 concept = GOC
5 level = generic
6 statusSupported = true
7 storeSupported = true
8 <DataInputs>
9 [InputPolygon]

10 Title = the geographic data
11 Abstract = the geographic data to run geographipc operation
12 minOccurs = 1
13 maxOccurs = 1
14 </DataInputs>
15 <DataOutputs>
16 [Result]
17 Title = the resulting data
18 Abstract = the resulting data after processing the operation
19 </DataOutputs>

Note: if you need to reference more than one concept, you should separate their names with a comma (ie.
concept = GO,GB),

14http://docs.opengeospatial.org/is/14-065/14-065.html#33
15http://docs.opengeospatial.org/is/14-065/14-065.html#34
16http://docs.opengeospatial.org/is/14-065/14-065.html#35

4.3. Process profiles registry 53

http://docs.opengeospatial.org/is/14-065/14-065.html#33
http://docs.opengeospatial.org/is/14-065/14-065.html#34
http://docs.opengeospatial.org/is/14-065/14-065.html#35

ZOO-Project Documentation, Release 1.8

4.3.2 Process Implementation Profile

A Process Implementation Profile is similar to a ZCFG file located in the implementation sub-directory, it
defines (or inherit from its parent) all the properties of a Generic Process Profile and specify Data Format
for both inputs and outputs. It can make reference to a concept by defining a concept key in the main
metadata information part.

You can find below the VectorOperation.zcfg file, a typical Process Implementation Profile for Vector Geo-
graphic Operation, it inherit from the GP generic profile:

1 [VectorOperation]
2 Title = Vector Geographic Operation
3 Abstract = Apply a Vector Geographic Operation on a features collection and return the resulting features collection
4 extend = GO
5 level = profile
6 <DataInputs>
7 [InputPolygon]
8 Title = the vector data
9 Abstract = the vector data to run geographic operation

10 <ComplexData>
11 <Default>
12 mimeType = text/xml
13 encoding = UTF-8
14 schema = http://fooa/gml/3.1.0/polygon.xsd
15 </Default>
16 <Supported>
17 mimeType = application/json
18 encoding = UTF-8
19 extension = js
20 </Supported>
21 </DataInputs>
22 <DataOutputs>
23 [Result]
24 Title = the resulting data
25 Abstract = the resulting geographic data after processing the operation
26 <ComplexData>
27 <Default>
28 mimeType = text/xml
29 encoding = UTF-8
30 schema = http://fooa/gml/3.1.0/polygon.xsd
31 </Default>
32 <Supported>
33 mimeType = application/json
34 encoding = UTF-8
35 extension = js
36 </Supported>
37 </ComplexData>
38 </DataOutputs>

4.3.3 ZCFG inheritance

For the ZCFG files at the service level, you can inherit the metadata from a Process Implementation Profile
available in the registry. As before, you simply need to add a extend key refering the ZCFG you want to
inherit from and a level key taking the ìmplementation‘ value to your main metadata informations.

54 Chapter 4. ZOO-Services

ZOO-Project Documentation, Release 1.8

So, for example, the original ConvexHull.zcfg17 may be rewritten as:

1 [ConvexHull]
2 Title = Compute convex hull.
3 Abstract = Return a feature collection that represents the convex hull of each geometry from the input collection.
4 serviceProvider = ogr_service.zo
5 serviceType = C
6 extend = VectorOperation
7 level = implementation

Now, suppose that your service is able to return the result in KML format, then you may write the following:

1 [ConvexHull]
2 Title = Compute convex hull.
3 Abstract = Return a feature collection that represents the convex hull of each geometry from the input collection.
4 serviceProvider = ogr_service.zo
5 serviceType = C
6 extend = VectorOperation
7 level = implementation
8 <DataOutputs>
9 [Result]

10 <Supported>
11 mimeType = application/vnd.google-earth.kml+xml
12 encoding = utf-8
13 </Supported>
14 </DataOutputs>

4.3.4 Setup registry browser

In the zoo-project/zoo-services/utils/registry you can find the source code and the
Makefile required to build the Registry Browser Services Provider. To build and install this service, use
the following comands:

cd zoo-project/zoo-services/utils/registry
make
cp cgi-env/* /usr/lib/cgi-bin

To have valid href in the metadata children of a wps:Process, you have to define the registryUrl to
point to the path to browse the registry. For this you have two different options, the first one is to install the
GetFromRegistry ZOO-Service and to use a WPS 1.0.0 Execute request as registryUrl to dynamically
generate Process Concept18, Generic Process Profile19 and Process Implementation Profile20. You also have
to add a registryUrl to the [main] section to inform the ZOO-Kernel that it should use the Registry
Browser to create the href attribute of Metadata nodes. So by adding the following line:

registryUrl = http://localhost/cgi-bin/zoo_loader.cgi?request=Execute&service=WPS&version=1.0.0&Identifier=GetFromRegistry&RawDataOutput=Result&DataInputs=id=

The second option is to pre-generate each level of the hierarchy by running shell commands then set
registryUrl to the URL to browse the generated files. In such a case, you will also have to define the
registryExt and set it to the file extension you used to generate your registry cache.

To generate the cache in /opt/zoo/registry/, use the following command:

17http://www.zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/ogr/base-vect-ops/cgi-
env/ConvexHull.zcfg?rev=491

18http://docs.opengeospatial.org/is/14-065/14-065.html#33
19http://docs.opengeospatial.org/is/14-065/14-065.html#34
20http://docs.opengeospatial.org/is/14-065/14-065.html#35

4.3. Process profiles registry 55

http://www.zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/ogr/base-vect-ops/cgi-env/ConvexHull.zcfg?rev=491
http://docs.opengeospatial.org/is/14-065/14-065.html#33
http://docs.opengeospatial.org/is/14-065/14-065.html#34
http://docs.opengeospatial.org/is/14-065/14-065.html#35

ZOO-Project Documentation, Release 1.8

cd /usr/lib/cgi-bin
mkdir /opt/zoo/regcache/{concept,generic,implementation}
for i in $(find /opt/zoo/registry/ -name "*.*") ;
do

j=$(echo $i | sed "s:../registry//::g;s:.zcfg::g;s:.txt::g") ;
if [-z "$(echo $j | grep concept)"];
then

ext="xml" ;
else

ext="txt";
fi
./zoo_loader.cgi "request=Execute&service=wps&version=1.0.0&Identifier=GetFromRegistry&RawDataOutput=Result&DataInputs=id=$j" | grep "<" > /opt/zoo/regcache/$j.$ext;

done

4.4 Create your own ZOO-Services

ZOO-Services are quite easy to create once you have installed the ZOO Kernel and have chosen code (in the
language of your choice) to turn into a ZOO service. Here are some HelloWorlds in Python, PHP, Java, C#
and JavaScript with links to their corresponding .zcfg files.

56 Chapter 4. ZOO-Services

ZOO-Project Documentation, Release 1.8

Contents

• Create your own ZOO-Services
– General information
– Python

* Python ZCFG requirements
* Python Data Structure used
* Sample ZOO Python Services Provider

– PHP
* ZOO-API
* PHP ZCFG requirements
* PHP Data Structure used
* Sample ZOO PHP Services Provider

– Java
* ZOO-API
* Java ZCFG requirements
* Java Data Structure used
* Sample ZOO Java Services Provider

– C#
* ZOO-API
* C# ZCFG requirements
* C# Data Structure used
* Sample ZOO C# Services Provider

– Javascript
* ZOO API
* Javascript ZCFG requirements
* Javascript Data Structure used
* Sample ZOO Javascript Services Provider

– R
* ZOO API
* R ZCFG requirements
* R Data Structure used
* Sample ZOO R Services Provider

4.4.1 General information

The function of the process for each programming language take three arguments: the main configuration,
inputs and outputs.

Note: The service must return 3 if the process run successfully

Note: The service must return 4 if the process ended with an error

4.4.2 Python

You’ll find here information needed to deploy your own Python Services Provider.

Python ZCFG requirements

4.4. Create your own ZOO-Services 57

ZOO-Project Documentation, Release 1.8

Note: For each Service provided by your ZOO Python Services Provider, the ZCFG File must be named
the same as the Python module function name (also the case of characters is important).

The ZCFG file should contain the following :

serviceType Python

serviceProvider The name of the Python module to use as a ZOO Service Provider. For instance, if your
script, located in the same directory as your ZOO Kernel, was named my_module.py then you
should use my_module (the Python module name) for the serviceProvider value in ZCFG file.

Python Data Structure used

The three parameters of the function are passed to the Python module as dictionaries.

Following you’ll find an example for each parameters

Main configuration

Main configuration contains several informations, some of them are really useful to develop your service.
Following an example

{
'main': {'lang': 'en-UK',

'language': 'en-US',
'encoding': 'utf-8',
'dataPath': '/var/www/tmp',
'tmpPath': '/var/www/tmp',
'version': '1.0.0',
'mapserverAddress': 'http://localhost/cgi-bin/mapserv',
'isSoap': 'false',
'tmpUrl': 'http://localhost/tmp/',
'serverAddress': 'http://localhost/zoo'
},

'identification': {'keywords': 'WPS,GIS',
'abstract': 'WPS services for testing ZOO',
'fees': 'None',
'accessConstraints': 'none',
'title': 'testing services'

},
'lenv': {'status': '0',

'soap': 'false',
'cwd': '/usr/lib/cgi-bin',
'sid': '24709'
},

'env': {'DISPLAY': 'localhost:0'},
'provider': {'addressCountry': 'it',

'positionName': 'Developer',
'providerName': 'Name of provider',
'addressAdministrativeArea': 'False',
'phoneVoice': 'False',
'addressCity': 'City',
'providerSite': 'http://www.your.site',
'addressPostalCode': '38122',
'role': 'Developer',
'addressDeliveryPoint': 'False',
'phoneFacsimile': 'False',

58 Chapter 4. ZOO-Services

ZOO-Project Documentation, Release 1.8

'addressElectronicMailAddress': 'your@email.com',
'individualName': 'Your Name'

}
}

Inputs

The inputs are somethings like this

{
'variable_name': {'minOccurs': '1',

'DataType': 'string',
'value': 'this_is_the_value',
'maxOccurs': '1',
'inRequest': 'true'

}
}

The access to the value you have to require for the value parameter, something like this

yourVariable = inputs['variable_name']['value']

Outputs

The outputs data as a structure really similar to the inputs one

{
'result': {'DataType': 'string',

'inRequest': 'true',
}

}

There is no ’value’ parameter before you assign it

inputs['result']['value'] = yourOutputDataVariable

The return statement has to be an integer: corresponding to the service status code.

To add a message for the wrong result you can add the massage to conf["lenv"]["message"], for
example:

conf["lenv"]["message"] = 'Your module return an error'

Sample ZOO Python Services Provider

The following code represents a simple ZOO Python Services Provider which provides only one Service,
the HelloPy one.

import zoo
import sys
def HelloPy(conf,inputs,outputs):

outputs["Result"]["value"]="Hello "+inputs["a"]["value"]+" from Python World !"
return zoo.SERVICE_SUCCEEDED

4.4. Create your own ZOO-Services 59

ZOO-Project Documentation, Release 1.8

4.4.3 PHP

ZOO-API

The ZOO-API for the PHP language is automatically available from your service code. Tthe following
functions are defined in the ZOO-API:

int zoo_SERVICE_SUCCEEDED() return the value of SERVICE_SUCCEEDED

int zoo_SERVICE_FAILED() return the value of SERVICE_FAILED

string zoo_Translate(string a) return the translated string (using the “zoo-service” textdomain21)

void zoo_UpdateStatus(Array conf,string message,int pourcent) update the status of the running service

PHP ZCFG requirements

The ZCFG file should contain the following :

serviceType PHP

serviceProvider The name of the php script (ie. service.php) to use as a ZOO Service Provider.

PHP Data Structure used

The three parameters are passed to the PHP function as Arrays.

Sample ZOO PHP Services Provider

<?
function HelloPHP(&$main_conf,&$inputs,&$outputs){

$tmp="Hello ".$inputs[S][value]." from PHP world !";
$outputs["Result"]["value"]=zoo_Translate($tmp);
return zoo_SERVICE_SUCCEEDED();

}
?>

4.4.4 Java

Specifically for the Java support, you may add the following three sections to your main.cfg file:

[java] This section is used to pass -D* parameters to the JVM created by the ZOO-Kernel to
handle your ZOO-Service (see ref. 122 or ref. 223 for sample available). For each map a =
b available in the [java] section, the option -Da=b will be passed to the JVM.

[javax] The section is used to pass -X* options to the JVM (see ref.24). For each map a = b
available in the [javax] section, the option -Xab will be passed to the JVM (ie. set mx=2G
to pass -Xmx2G).

21http://www.gnu.org/software/libc/manual/html_node/Locating-gettext-catalog.html#index-textdomain
22http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html#BehavioralOptions
23http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html#PerformanceTuning
24http://docs.oracle.com/cd/E22289_01/html/821-1274/configuring-the-default-jvm-and-java-arguments.html

60 Chapter 4. ZOO-Services

http://www.gnu.org/software/libc/manual/html_node/Locating-gettext-catalog.html#index-textdomain
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html#BehavioralOptions
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html#PerformanceTuning
http://docs.oracle.com/cd/E22289_01/html/821-1274/configuring-the-default-jvm-and-java-arguments.html

ZOO-Project Documentation, Release 1.8

[javaxx] This section is used to pass -XX:* parameters to the JVM created by the ZOO-Kernel
to handle your ZOO-Service (see ref. 125 or ref. 226 for sample available). For each map
a = b available in the [javaxx] section, the option -XX:a=b will be passed to the JVM.
In case of a map a = minus (respectively a=plus) then the option -XX:-a (respectivelly
-XX:+a) will be passed.

ZOO-API

Before you build your first ZOO-Service implemented in Java, it is recommended that you first build the
ZOO class of the Java ZOO-API.

Note: You should build ZOO-Kernel prior to follow this instructions.

To build the ZOO.class of the ZOO-API for Java, use the following command:

cd zoo-api/java
make

Note: running the previous commands will require that both javac and javah are in your PATH.

You should copy the libZOO.so in a place Java can find it. In case you have defined the
java.library.path key as /usr/lib/cgi-bin (in the [java] section), then you should copy it there.

cp libZOO.so /usr/lib/cgi-bin

The ZOO-API provides the following functions:

String translate(String s) This function call the internal ZOO-Kernel function responsible for
searching a translation of s in the zoo-services dictionary.

void updateStatus(Hashmap conf,String pourcent,String message) This function call the up-
dateStatus ZOO-Kernel function responsible for updating the status of the running service
(only usefull when the service has been called asynchronously).

Java ZCFG requirements

Note: For each Service provided by your ZOO Java Services Provider (your corresponding Java class), the
ZCFG File should have the name of the Java public method corresponding to the service (case-sensitive).

The ZCFG file should contain the following :

serviceType Java

serviceProvider The name of the Java class to use as a ZOO Service Provider. For instance, if your java
class, located in the same directory as your ZOO-Kernel, was named HelloJava.class then you
should use HelloJava.

Java Data Structure used

The three parameters are passed to the Java function as java.util.HashMap27.

25http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html#BehavioralOptions
26http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html#PerformanceTuning
27http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

4.4. Create your own ZOO-Services 61

http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html#BehavioralOptions
http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html#PerformanceTuning
http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

ZOO-Project Documentation, Release 1.8

Sample ZOO Java Services Provider

import java.util.*;
public class HelloJava {

public static int HelloWorldJava(HashMap conf,HashMap inputs, HashMap outputs) {
HashMap hm1 = new HashMap();
hm1.put("dataType","string");
HashMap tmp=(HashMap)(inputs.get("S"));
java.lang.String v=tmp.get("value").toString();
hm1.put("value","Hello "+v+" from JAVA WOrld !");
outputs.put("Result",hm1);
System.err.println("Hello from JAVA WOrld !");
return ZOO.SERVICE_SUCCEEDED;

}
}

4.4.5 C#

Specifically for the C# support, you should add the following section to your main.cfg file.

[mono] This section is used to define both libPath and etcPath required by the Mono .NET
Framework.

ZOO-API

Before you build your first ZOO-Service implemented in Mono, you should first build the ZMaps.dll
containing the Mono ZOO-API.

Note: You should build ZOO-Kernel prior to follow this instructions.

cd zoo-api/mono
make

Then you should copy the ZMaps.dll in your servicePath or in the directory where your
zoo_loader.cgi file is stored.

The ZOO-API is available from a C# class named ZOO_API and provides the following static variables:

int SERVICE_SUCCEEDED Value to return in case your service end successfully.

int SERVICE_FAILED Value to retrun in case of failure.

The ZOO-API provides the following static functions:

string Translate(String s) This function call the internal ZOO-Kernel function responsible for
searching a translation of s in the zoo-services dictionary.

void UpdateStatus(ZMaps conf,String pourcent,String message) This function call the updat-
eStatus ZOO-Kernel function responsible for updating the status of the running service
(only usefull when the service has been called asynchronously).

C# ZCFG requirements

Note: For each Service provided by your ZOO Mono Services Provider (your corresponding Mono class),
the ZCFG File should have the name of the Mono public static function corresponding to the service (case-
sensitive).

62 Chapter 4. ZOO-Services

ZOO-Project Documentation, Release 1.8

The ZCFG file should contain the following :

serviceType Mono

serviceProvider The full name of the C# dll containing the ZOO-Service Provider (including .dll).

serviceNameSpace The namespace of the C# class containing the ZOO-Service Provider.

serviceClass The name of the C# class containing the ZOO-Service Provider definition.

C# Data Structure used

The three parameters of the function are passed to the Mono static function as ZMaps which are basically
Dictionary<String,_ZMaps>.

Sample ZOO C# Services Provider

using System;
using ZooGenerics;
using System.Threading;

namespace Default
{

public class Service{
public static int HelloMono(ZMaps conf,ZMaps inputs,ZMaps outputs){

_ZMaps test;
if(inputs.TryGetValue("a", out test)){

ZMap content=test.getContent();
String test1;
if(content.TryGetValue("value", out test1)){

outputs.setMapsInMaps("Result","value",ZOO_API.Translate("Hello ")+test1+" from the Mono .NET framework World!");
}
return ZOO_API.SERVICE_SUCCEEDED;

}else{
conf.setMapsInMaps("lenv","message","Unable to run the service");
return ZOO_API.SERVICE_FAILED;

}
}
public static int longProcessMono(ZMaps conf,ZMaps inputs,ZMaps outputs){

_ZMaps test;
int i=1;
while(i<10){

ZOO_API.UpdateStatus(conf,"Step "+i,(i*10));
Thread.Sleep(1000);
i+=1;

}
if(inputs.TryGetValue("a", out test)){

ZMap content=test.getContent();
String test1;
if(content.TryGetValue("value", out test1)){

outputs.setMapsInMaps("Result","value",ZOO_API.Translate("Hello ")+test1+" from the Mono .NET framework World!");
}
return ZOO_API.SERVICE_SUCCEEDED;

}else{
conf.setMapsInMaps("lenv","message","Unable to run the service");
return ZOO_API.SERVICE_FAILED;

4.4. Create your own ZOO-Services 63

ZOO-Project Documentation, Release 1.8

}
}

};
}

4.4.6 Javascript

ZOO API

If you need to use ZOO API in your service, you have first to copy zoo-api.js and zoo-proj4js.js
where your services are located (for example in Unix system probably in /usr/lib/cgi-bin/

Javascript ZCFG requirements

Note: For each Service provided by your ZOO Javascript Services Provider, the ZCFG File must be named
the same as the Javascript function name (also the case of characters is important).

The ZCFG file should contain the following :

serviceType JS

serviceProvider The name of the JavaScript file to use as a ZOO Service Provider. For instance, if your
script, located in the same directory as your ZOO Kernel, was named my_module.js then you
should use my_module.js.

Javascript Data Structure used

The three parameters of the function are passed to the JavaScript function as Object.

Sample ZOO Javascript Services Provider

function hellojs(conf,inputs,outputs){
outputs=new Array();
outputs={};
outputs["result"]["value"]="Hello "+inputs["S"]["value"]+" from JS World !";
return Array(3,outputs);

}

4.4.7 R

ZOO API

For using the R language from the ZOO-Project, you have first to copy minimal.r in the same directory
as the ZOO-Kernel.

The ZOO-API is available from a R script and provide access to a global zoo environment which contains
both static variables and also the dictionaries for outputs and conf:

int zoo[[”SERVICE_SUCCEEDED”]] Value to return in case your service end successfully.

int zoo[[”SERVICE_FAILED”]] Value to retrun in case of failure.

64 Chapter 4. ZOO-Services

ZOO-Project Documentation, Release 1.8

The ZOO-API provides the following functions:

string ZOOTranslate(String s) This function call the internal ZOO-Kernel function responsible
for searching a translation of s in the zoo-services dictionary.

void ZOOUpdateStatus(ZMaps conf,String pourcent) This function call the updateStatus
ZOO-Kernel function responsible for updating the status of the running service (only use-
full when the service has been called asynchronously).

R ZCFG requirements

Note: For each Service provided by your ZOO R Services Provider, the ZCFG File must be named the same
as the R function name (it is case-sensitive).

The ZCFG file should contain the following :

serviceType R

serviceProvider The name of the R file to use as a ZOO Service Provider. For instance, if your script,
located in the same directory as your ZOO Kernel, was named my_module.r then you should use
my_module.r.

R Data Structure used

The three parameters of the function are passed to the R function as R dictionaries.

The specificity of the R language make that it was easier to use global variales than passing parameters by
reference as we do in other progamming languages. It is the reason why you will have to access outpus by
using the global variable as for the main configuration dictionary.

Sample ZOO R Services Provider

source("minimal.r")

hellor <- function(a,b,c) {
Set the result
zoo[["outputs"]][["Result"]][["value"]] <<- ZOOTranslate(paste("Hello",b[["S"]][["value"]],"from the R World!",sep=" "))
Return SERVICE_SUCCEEDEED
return(zoo[["SERVICE_SUCCEEDEED"]])

}

4.5 Translation Support

ZOO-Kernel support translating internal messages it emits but it can also translate both the metadata infor-
mations stored in the ZCFG file and the messages emitted by the ZOO-Service itself. This document show
how to create the files required to handle such a translation process for the ZOO-Services.

4.5.1 ZCFG translation

First of all, use the following commands from your Services Provider directory in order to extract all the
messages to translate from the ZCFG files :

4.5. Translation Support 65

ZOO-Project Documentation, Release 1.8

#!/bin/bash
mkdir -p locale/{po,.cache}
for j in cgi-env/*zcfg ;
do

for i in Title Abstract;
do
grep $i $j | sed "s:$i = :_ss(\":g;s:$:\"):g" ;

done;
done > locale/.cache/my_service_string_to_translate.c

Then generate the messages.po file based on the Services Provider source code (located in service.c
in this example) using the following command:

#!/bin/bash
xgettext service.c locale/.cache/my_service_string_to_translate.c -o message.po -p locale/po/ -k_ss

Once messages.po is created, use the following command to create the .po file for the targeted language
to translate into. We will use the French language here as an example:

#!/bin/bash
cd locale/po/
msginit -i messages.po -o zoo_fr_FR.po -l fr

Edit the zoo_fr_FR.po file with your favorite text editor or using one of the following tools:

• poedit28

• virtaal29

• transifex30

Once the zoo_fr_FR.po file is completed, you can generate and install the corresponding .mo file using
the following command:

#!/bin/bash
msgfmt locale/po/zoo_fr_FR.po -o /usr/share/locale/fr/LC_MESSAGES/zoo-services.mo

In order to test the Services Provider ZCFG and internal messages translation, please add the language
argument to you request. As an example, such a request:

http://youserver/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS

would become the following:

http://youserver/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS&language=fr-FR

The following command may also be useful in order to pull all the translations already available for a
specific language.

#!sh
msgcat -o compilation.po $(find ../../ -name fr_FR.utf8.po)
msgfmt compilation.po -o /usr/share/locale/fr/LC_MESSAGES/zoo-services.mo

28http://www.poedit.net/
29http://translate.sourceforge.net/wiki/virtaal/index
30https://www.transifex.net/

66 Chapter 4. ZOO-Services

http://www.poedit.net/
http://translate.sourceforge.net/wiki/virtaal/index
https://www.transifex.net/
http://youserver/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS
http://youserver/cgi-bin/zoo_loader.cgi?request=GetCapabilities&service=WPS&language=fr-FR

ZOO-Project Documentation, Release 1.8

4.6 ZOO Status Service

The ZOO-Status Service is a ZOO-Project31 utility allowing to get the status of a running WPS Service.

4.6.1 Description

It returns the stage of completion of the ongoing Service in percentage (%). The ZOO-Status Service is
usefull to monitor ZOO-Services. It can also be used to animate WPS progress bars from client-side applica-
tions.

4.6.2 Installation

To install the ZOO Status Service you have to move in /path/to/zoo/source/zoo-services/utils/status/
and compile the source running the make command. If no errors are returned during compilation you
can copy the content of cgi-env to /usr/lib/cgi-bin/ or where you have your zoo_loader.cgi
working with this command (you need administration right):

cp /path/to/zoo/source/zoo-services/utils/status/cgi-env/*{zcfg,zo,py} /usr/lib/cgi-bin

With this command you copy the code to permit to ZOO Status Service and some example processes
about how it works.

Now you have to add these two lines to main.cfg :

rewriteUrl=call
dataPath=/var/www/data

Here you define the path where the service is able to find the xsl file, specified in the dataPath parameter.
You also tell the ZOO Kernel that you want to use the rewriteUrl.

The last operation is to copy the updateStatus.xsl to dataPath directory as follow:

cp /path/to/zoo/source/zoo-services/utils/status/cgi-env/*{xsl} /var/www/data

4.7 Debugging ZOO Services

Several methods can be used in order to debug ZOO-Services. The most common solutions are web or
command line.

4.7.1 Web

Any problem can be checked in the Apache server log file when using http WPS requests.

On Unix, the log files is usually located in /var/log/apache2 and the relevant one is named error_log. A
simple way to read this file is to use the tail command, as it allows to see the file updates for each request

tail -f /var/log/apache2/error_log

If the log is not clear enough, you still have the possibility to add more debug information to your source
code, writing to standard errors.

31http://zoo-project.org

4.6. ZOO Status Service 67

http://zoo-project.org

ZOO-Project Documentation, Release 1.8

Python

Using Python, you can for example do this:

import sys

#add this line when you want see an own message
sys.stderr.write("My message")

Javascript

Using JavaScript, you can use alert to print a string to standard error, for example:

// add this line when you want to see own message
alert('My message')
// you can debug value of inputs, outputs or conf
alert(inputs["S"]["value"])

Note: If you try to pass an object it will only return [object Object]

4.7.2 Command line

ZOO-Kernel (zoo_loader.cgi) can also be used from command line. This is really useful for debugging services
in a deeper way, for example:.

in order to use it you have to copy test_service.py and HelloPy.zcfg from
the example services
./zoo_loader.cgi "service=wps&version=1.0.0&request=execute&identifier=HelloPy&datainputs=a=your name&responsedocument=Result"

Working this way you can use the standard debug system of the actual programming language used to
develop your service.

In case you should simulate POST requests, you can use the following command to tell the ZOO-Kernel to
use the file /tmp/req.xml as the input XML request:

Define required environment settings
export REQUEST_METHOD=POST
export CONTENT_TYPE=text/xml
Run the request stored in a file
./zoo_loader.cgi < /tmp/req.xml

GDB

From command line you can use also the command line tool GDB32 to debug zoo_loader.cgi, you have
to run:

launch zoo_loader.cgi from gdb
gdb zoo_loader.cgi
now run your request
run "service=wps&version=1.0.0&request=execute&identifier=HelloPy&datainputs=a=your name&responsedocument=Result"

32http://www.gnu.org/software/gdb/

68 Chapter 4. ZOO-Services

http://www.gnu.org/software/gdb/

ZOO-Project Documentation, Release 1.8

Note: You can use the same parameter used before to simulate POST requests when running from gdb.

If nothing helped, you can ask help at the ZOO mailing list33 copying the result of the command.

Python

For Python, you can use pdb, more info at http://docs.python.org/2/library/pdb.html

import pdb

add this line when you want investigate your code in more detail
pdb.set_trace()

Javascript

You can use alert also to print in the console, more info in the Javascript web section

4.8 Available ZOO-Services

ZOO-Project34 includes some ready-to-use WPS Services based on reliable open source libraries such as
such as GDAL35, CGAL36, GRASS GIS37, OrfeoToolbox38 and SAGA GIS39.

ZOO-Services are either developed in C/Python (with minor modifications with respect to the orginal soft-
ware source code) and stored in the zoo-services svn40 directory or automatically generated using some
of ZOO-Kernel configuration options.

4.8.1 Based on GDAL

Note: GDAL41 is the Geospatial Data Abstraction Library. Learn more on official website42.

33http://lists.osgeo.org/cgi-bin/mailman/listinfo/zoo-discuss
34http://zoo-project.org
35http://gdal.org
36http://gcal.org
37http://grass.osgeo.org
38http://orfeo-toolbox.org
39https://www.orfeo-toolbox.org
40http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services
41http://gdal.org
42http://gdal.org

4.8. Available ZOO-Services 69

http://lists.osgeo.org/cgi-bin/mailman/listinfo/zoo-discuss
http://docs.python.org/2/library/pdb.html
http://zoo-project.org
http://gdal.org
http://gcal.org
http://grass.osgeo.org
http://orfeo-toolbox.org
https://www.orfeo-toolbox.org
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services
http://gdal.org
http://gdal.org

ZOO-Project Documentation, Release 1.8

Name Description Lan-
guage

Gdal_Contour43 Builds vector contour lines from a
raster elevation model

C

Gdal_Grid44 Creates regular raster grid from the
scattered data read from an OGR
datasource

C

Gdal_Dem45 Provides tools to analyze raster
elevation model

C

Gdal_Ndvi46 Computes Normalized Difference
Vegetation Index on a raster file

Python

Gdal_Profile47 Fetches XYZ values of a raster DEM
along a linestring

C

Gdal_Translate48 Converts raster data between different
formats

C

Gdal_Warp49 Mosaic/Reproject/Warp a raster image C
Ogr2Ogr50 Converts vector data from one format

to another
C

Base-vect-ops51 Provides tools for single and multiple
geometries vector-based spatial
analysis

C

Base-vect-ops52 Provides tools for single and multiple
geometries vector-based spatial
analysis

Python

4.8.2 Based on CGAL

Note: CGAL53 is the Computational Geometry Algorithms Library. Learn more on official web-
site54.

Name Description Lan-
guage

Cgal_Delaunay55 Computes the edges of Delaunay
triangulation for a set of data points

C

Ggal_Voronoi56 Computes the edges of Voronoi
diagram for a set of data points

C

43http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/contour
44http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/grid
45http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/dem
46http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/ndvi
47http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/profile
48http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/translate
49http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/translate
50http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/ogr/ogr2ogr/
51http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/ogr/base-vect-ops
52http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/ogr/base-vect-ops-py
53http://gdal.org
54http://cgal.org
55http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/cgal/delaunay.c
56http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/cgal/voronoi.c

70 Chapter 4. ZOO-Services

http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/contour
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/grid
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/dem
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/ndvi
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/profile
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/translate
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/gdal/translate
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/ogr/ogr2ogr/
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/ogr/base-vect-ops
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/ogr/base-vect-ops-py
http://gdal.org
http://cgal.org
http://cgal.org
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/cgal/delaunay.c
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-services/cgal/voronoi.c

ZOO-Project Documentation, Release 1.8

4.8.3 Based on GRASS GIS

Note: GRASS GIS57 is the Geographic Resources Analysis Support System. Learn more on official
website58.

Name Description Lan-
guage

Raster modules (r.*)59 Most of the GRASS7 vector modules
are supported

C

Vector modules (v.*)60 Most of the GRASS7 vector modules
are supported

C

Imagery modules (i.*)61 Most of the GRASS7 iamgery
modules are supported

C

GRASS GIS 762 modules can be used as ZOO-Services without any modification using the wps-grass-
bridge63 library. The latter includes useful tools such as GrassXMLtoZCFG.py64 and ZOOGrassMod-
uleStarter.py65 for using the supported GRASS modules directly as ZOO-Services. A step-by-step installa-
tion guide suited for ZOO-Project is available in the wps-grass-bridge66 documentation.

4.8.4 Based on Orfeo Toolbox

Note: Orfeo Toolbox67 is an open source image processing library. Learn more on official
website68.

Orfeo Toolbox69 Applications70 can be used as ZOO-Services without any modification using the Optional
Orfeo Toolbox support.

4.8.5 Based on SAGA GIS

Note: SAGA GIS71 is the System for Automated Geoscientific Analyses. Learn more on official
website72.

57http://grass.osgeo.org
58http://grass.osgeo.org
59http://grass.osgeo.org/grass70/manuals/raster.html
60http://grass.osgeo.org/grass70/manuals/vector.html
61http://grass.osgeo.org/grass70/manuals/imagery.html
62http://grass.osgeo.org
63https://code.google.com/p/wps-grass-bridge/
64https://code.google.com/p/wps-grass-bridge/source/browse/trunk/GrassXMLtoZCFG.py
65https://code.google.com/p/wps-grass-bridge/source/browse/trunk/ZOOGrassModuleStarter.py
66https://code.google.com/p/wps-grass-bridge/wiki/ZOO_WPS_Integration
67https://www.orfeo-toolbox.org
68https://www.orfeo-toolbox.org
69https://www.orfeo-toolbox.org
70http://otbcb.readthedocs.org/en/latest/Applications.html
71https://www.orfeo-toolbox.org
72http://www.saga-gis.org/en/index.html

4.8. Available ZOO-Services 71

http://grass.osgeo.org
http://grass.osgeo.org
http://grass.osgeo.org/grass70/manuals/raster.html
http://grass.osgeo.org/grass70/manuals/vector.html
http://grass.osgeo.org/grass70/manuals/imagery.html
http://grass.osgeo.org
https://code.google.com/p/wps-grass-bridge/
https://code.google.com/p/wps-grass-bridge/
https://code.google.com/p/wps-grass-bridge/source/browse/trunk/GrassXMLtoZCFG.py
https://code.google.com/p/wps-grass-bridge/source/browse/trunk/ZOOGrassModuleStarter.py
https://code.google.com/p/wps-grass-bridge/source/browse/trunk/ZOOGrassModuleStarter.py
https://code.google.com/p/wps-grass-bridge/wiki/ZOO_WPS_Integration
https://www.orfeo-toolbox.org
https://www.orfeo-toolbox.org
https://www.orfeo-toolbox.org
http://otbcb.readthedocs.org/en/latest/Applications.html
https://www.orfeo-toolbox.org
http://www.saga-gis.org/en/index.html

ZOO-Project Documentation, Release 1.8

72 Chapter 4. ZOO-Services

CHAPTER

FIVE

ZOO-API

This section provides information on ZOO-API, the ZOO-Project1 server-side JavaScript API.

5.1 What is ZOO-API ?

ZOO-API is a server-side Javascript library for creating and chaining ZOO-Services. It lets you script on
the server-side to execute WPS Processes, and thus to use common JavaScript controls and logic for WPS
chaining.

5.1.1 Server-side JavaScript WPS

ZOO-API JavaScript Support (Optional) works on the server-side using the Mozilla foundation JavaScript2

engine, SpiderMonkey3. It uses a Proj4js4 adaptation for server-side reprojection. It also allows to easily
convert vector formats (such as GML5, KML6, GeoJSON7, etc).

5.2 Using ZOO-API

This section will help you to get started using ZOO-API.

5.2.1 Prerequisites

ZOO-API relies on the following software:

• ZOO-Kernel (http://zoo-project.org), the ZOO-Project WPS Server.

• SpiderMonkey (https://developer.mozilla.org/en/SpiderMonkey), the Mozilla JavaScript8 engine.

Warning: The ZOO-Kernel optional JavaScript support is required for using ZOO-API

1http://zoo-project.org
2https://developer.mozilla.org/en/JavaScript
3https://developer.mozilla.org/en/SpiderMonkey
4http://proj4js.org/
5http://www.opengeospatial.org/standards/gml
6http://www.opengeospatial.org/standards/kml
7http://geojson.org/geojson-spec.html
8https://developer.mozilla.org/en/JavaScript

73

http://zoo-project.org
https://developer.mozilla.org/en/JavaScript
https://developer.mozilla.org/en/SpiderMonkey
http://proj4js.org/
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/kml
http://geojson.org/geojson-spec.html
http://zoo-project.org
https://developer.mozilla.org/en/SpiderMonkey
https://developer.mozilla.org/en/JavaScript

ZOO-Project Documentation, Release 1.8

5.2.2 Download

• zoo-api.js9

• zoo-proj4js.js10

If you did not download the ZOO-Project source code already, please proceed to a svn checkout with the
following command:

svn checkout http://svn.zoo-project.org/svn/trunk/zoo-project/zoo-api

5.3 ZOO-API Classes

The following classes are available in the ZOO API:

5.3.1 ZOO

The following constants and functions are available for the ZOO class:

Constants

NAME DESCRIPTION
SERVICE_ACCEPTED {Integer} used for
SERVICE_STARTED {Integer} used for
SERVICE_PAUSED {Integer} used for
SERVICE_SUCCEEDED {Integer} used for
SERVICE_FAILED {Integer} used for

Functions

NAME DESCRIPTION
re-
moveItem

Remove an object from an array.

indexOf
extend Copy all properties of a source object to a destination object.
rad
distVin-
centy

Given two objects representing points with geographic coordinates, this calculates the
distance between those points on the surface of an ellipsoid.

Class Method used to create ZOO classes.
Updat-
eStatus

Method used to update the status of the process

Constants

SERVICE_ACCEPTED {Integer} used for

SERVICE_STARTED {Integer} used for

SERVICE_PAUSED {Integer} used for
9http://zoo-project.org/trac/export/1/trunk/zoo-api/js/ZOO-api.js

10http://zoo-project.org/trac/export/1/trunk/zoo-api/js/ZOO-proj4js.js

74 Chapter 5. ZOO-API

http://zoo-project.org/trac/export/1/trunk/zoo-api/js/ZOO-api.js
http://zoo-project.org/trac/export/1/trunk/zoo-api/js/ZOO-proj4js.js

ZOO-Project Documentation, Release 1.8

SERVICE_SUCCEEDED {Integer} used for

SERVICE_FAILED {Integer} used for

Functions

removeItem

removeItem: function(array,item)

Remove an object from an array. Iterates through the array to find the item, then removes it.

Parameters

array {Array}

item {Object}

Returns

{Array} A reference to the array

indexOf

indexOf: function(array,obj)

Parameters

array {Array}

obj {Object}

Returns

{Integer} The index at, which the first object was found in the array. If not found, returns -1.

extend

extend: function(destination,source)

Copy all properties of a source object to a destination object. Modifies the passed in destination object.
Any properties on the source object that are set to undefined will not be (re)set on the destination
object.

Parameters

destination {Object} The object that will be modified
source {Object} The object with properties to be set on the destination

Returns

{Object} The destination object.

rad

rad: function(x)

5.3. ZOO-API Classes 75

ZOO-Project Documentation, Release 1.8

Parameters

x {Float}

Returns

{Float}

distVincenty

distVincenty: function(p1,p2)

Given two objects representing points with geographic coordinates, this calculates the distance be-
tween those points on the surface of an ellipsoid.

Parameters:

p1 {ZOO.Geometry.Point} (or any object with both .x, .y properties)
p2 {ZOO.Geometry.Point} (or any object with both .x, .y properties)

Class

Class: function()

Method used to create ZOO classes. Includes support for multiple inheritance.

UpdateStatus

UpdateStatus: function(env,value)

Method used to update the status of the process

Parameters

env {Object} The environment object
value {Float} The status value between 0 to 100

5.3.2 ZOO.Format.WPS

Read/Write WPS.

Inherits from

• ZOO.Format

76 Chapter 5. ZOO-API

ZOO-Project Documentation, Release 1.8

Functions and Properties

NAME DESCRIPTION
schemaLocation {String} Schema location for a particular minor version.
namespaces {Object} Mapping of namespace aliases to namespace URIs.
read
parseExecuteResponse
parseData Object containing methods to analyse data response.
parseData.complexdata Given an Object representing the WPS complex data response.
parseData.literaldata Given an Object representing the WPS literal data response.
parseData.reference Given an Object representing the WPS reference response.

schemaLocation {String} Schema location for a particular minor version.

namespaces {Object} Mapping of namespace aliases to namespace URIs.

read

read:function(data)

Parameters

data {String} A WPS xml document

Returns

{Object} Execute response.

parseExecuteResponse

parseExecuteResponse: function(node)

Parameters

node {E4XElement} A WPS ExecuteResponse document

Returns

{Object} Execute response.

parseData Object containing methods to analyse data response.

parseData.complexdata Given an Object representing the WPS complex data response.

Parameters

node {E4XElement} A WPS node.

Returns

{Object} A WPS complex data response.

parseData.literaldata Given an Object representing the WPS literal data response.

Parameters

node {E4XElement} A WPS node.

Returns

{Object} A WPS literal data response.

parseData.reference Given an Object representing the WPS reference response.

Parameters

node {E4XElement} A WPS node.

5.3. ZOO-API Classes 77

ZOO-Project Documentation, Release 1.8

Returns

{Object} A WPS reference response.

5.3.3 ZOO.Process

Used to query OGC WPS process defined by its URL and its identifier. Useful for chaining localhost process.

Properties and Functions

NAME DESCRIPTION
schemaLocation {String} Schema location for a particular minor version.
namespaces {Object} Mapping of namespace aliases to namespace URIs.
url {String} The OGC’s Web PRocessing Service URL, default is

http://localhost/zoo.
identifier {String} Process identifier in the OGC’s Web Processing Service.
ZOO.Process Create a new Process
Execute Query the OGC’s Web PRocessing Servcie to Execute the process.
buildInput Object containing methods to build WPS inputs.
buildInput.complex Given an E4XElement representing the WPS complex data input.
buildInput.reference Given an E4XElement representing the WPS reference input.
buildInput.literal Given an E4XElement representing the WPS literal data input.
buildDataInput-
sNode

Method to build the WPS DataInputs element.

schemaLocation {String} Schema location for a particular minor version.

namespaces {Object} Mapping of namespace aliases to namespace URIs.

url {String} The OGC’s Web PRocessing Service URL, default is http://localhost/zoo.

identifier {String} Process identifier in the OGC’s Web Processing Service.

ZOO.Process Create a new Process

Parameters

url {String} The OGC’s Web Processing Service URL.
identifier {String} The process identifier in the OGC’s Web Processing Service.

Execute

Execute: function(inputs)

Query the OGC’s Web PRocessing Servcie to Execute the process.

Parameters

inputs {Object}

Returns

{String} The OGC’s Web processing Service XML response. The result needs to be interpreted.

buildInput Object containing methods to build WPS inputs.

78 Chapter 5. ZOO-API

http://localhost/zoo
http://localhost/zoo

ZOO-Project Documentation, Release 1.8

buildInput.complex Given an E4XElement representing the WPS complex data input.

Parameters

identifier {String} the input indetifier
data {Object} A WPS complex data input.

Returns

{E4XElement} A WPS Input node.

buildInput.reference Given an E4XElement representing the WPS reference input.

Parameters

identifier {String} the input indetifier
data {Object} A WPS reference input.

Returns

{E4XElement} A WPS Input node.

buildInput.literal Given an E4XElement representing the WPS literal data input.

Parameters

identifier {String} the input indetifier
data {Object} A WPS literal data input.

Returns

{E4XElement} The WPS Input node.

buildDataInputsNode

buildDataInputsNode:function(inputs)

Method to build the WPS DataInputs element.

Parameters

inputs {Object}

Returns

{E4XElement} The WPS DataInputs node for Execute query.

5.3.4 ZOO.Request

Contains convenience methods for working with ZOORequest which replace XMLHttpRequest.

5.3. ZOO-API Classes 79

ZOO-Project Documentation, Release 1.8

Functions

NAME DESCRIPTION
GET Send an HTTP GET request.
POST Send an HTTP POST request.

GET Send an HTTP GET request.

Parameters

url {String} The URL to request.
params {Object} Params to add to the url

Returns

{String} Request result.

POST Send an HTTP POST request.

Parameters

url {String} The URL to request.
body {String} The request’s body to send.
headers {Object} A key-value object of headers to push to the request’s head

Returns

{String} Request result.

5.4 Examples

This section gathers sample scripts using ZOO-API, the ZOO-Project11 server-side JavaScript API.

ZOO-API contains many classes and functions. You can find the description list here.

5.4.1 ZOO.Process example

function SampleService(conf,inputs,outputs){
var myProcess = new ZOO.Process('http://localhost/cgi-bin-new1/zoo_loader_new1.cgi','Boundary');
var myInputs = {InputPolygon: { type: 'complex', value: '{"type":"Polygon","coordinates":[[[-106.993853,35.998758],[-107.407233,35.997524],[-107.430525,35.997726],[-107.4824,35.99878],[-108.37013,35.999472],[-109.043633,35.996652],[-109.096265,35.997817],[-109.148763,36.001751],[-109.200981,36.008442],[-109.252775,36.017871],[-109.304,36.030014],[-109.354516,36.044835],[-106.468201,35.991497],[-106.855511,35.989504],[-106.90933,35.990676],[-106.963008,35.994743],[-106.993853,35.998758]]]}', mimeType: "application/json"} };
var myExecuteResult=myProcess.Execute(myInputs);
return {result: ZOO.SERVICE_SUCCEEDED, outputs: [{name:"Result", value: myExecuteResult}] };

}

In this really short example you can see how to create ZOO.Process class instance and call the Execute
method on such an instance. Then you’ll just need to return a JavaScript object containing the attributes
result and outputs, which I’m sure you already know what is about. The first is about the status of the
process (can be ZOO.SERVICE_SUCEEDED, ZOO.SERVICE_FAILED and so on), the last is obviously the
resulting maps (take a look at the maps internal data structure used by ZOO Kernel in service.h).

11http://zoo-project.org

80 Chapter 5. ZOO-API

http://zoo-project.org

ZOO-Project Documentation, Release 1.8

5.4.2 ZOO.UpdateStatus example

function SampleLongService(conf,inputs,outputs){
var my_i=0;
while(my_i<100){

try{
conf["lenv"]["status"]=my_i;

}
catch(e){
}
ZOOUpdateStatus(conf,my_i);
SampleService(conf,inputs,outputs);
my_i+=10;

}
return SampleService(conf,inputs,outputs);

}

You can see in this sample code how to use the ZOOUpdateStatus function to update the current status
of your running process. This information will be really helpfull when the ZOO Kernel will run your
JavaScript Service in background mode (if the user set to true the storeExecuteResponse parameter
in his request).

5.4. Examples 81

ZOO-Project Documentation, Release 1.8

82 Chapter 5. ZOO-API

CHAPTER

SIX

ZOO-CLIENT

This section provides information on ZOO-Client, the ZOO-Project1 WPS JavaScript client.

6.1 What is ZOO-Client ?

ZOO-Client is a client-side JavaScript API which provides simple methods for interacting with WPS2 server
from web applications. It is helpful for sending requests to any WPS compliant server (such as ZOO-Kernel)
and to parse the output responses using simple JavaScript.

6.1.1 JavaScript

ZOO-Client relies on modern JavaScript libraries and can be seamlessly integrated in new or existing web
platforms or applications. ZOO-Client works by expanding the tags available in WPS specific templates
using values provided by a JavaScript hash or object. It allows to build valid WPS requests and to send
them to a WPS server. It also provides functions to easily parse and reuse the output XML responses. Read
the next section to get started.

Please, refer to the ZOO-Client API documentation3 for accessing the up-to-date documentation.

6.1.2 Templates

ZOO-Client uses logic-less Mustache4 templates for creating well-formed WPS requests. Please, refer to the
ZOO-Client API documentation5 for more details about the functions using the templates.

GetCapabilities

GetCapabilities requests are created using the following template:

<wps:GetCapabilities xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 ../wpsGetCapabilities_request.xsd" language="{{language}}" service="WPS">
<wps:AcceptVersions>

<ows:Version>1.0.0</ows:Version>
</wps:AcceptVersions>

</wps:GetCapabilities>

1http://zoo-project.org
2http://www.opengeospatial.org/standards/wps/
3http://www.zoo-project.org/jsDoc/index.html
4http://mustache.github.io/
5http://www.zoo-project.org/jsDoc//module-wpsPayload.html

83

http://zoo-project.org
http://www.opengeospatial.org/standards/wps/
http://www.zoo-project.org/jsDoc/index.html
http://mustache.github.io/
http://www.zoo-project.org/jsDoc//module-wpsPayload.html

ZOO-Project Documentation, Release 1.8

DescribeProcess

DescribeProcess requests are created using the following template:

<DescribeProcess xmlns="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 ../wpsDescribeProcess_request.xsd" service="WPS" version="1.0.0" language="{{language}}">
{{#identifiers}}

<ows:Identifier>{{.}}</ows:Identifier>
{{/identifiers}}
</DescribeProcess>

Execute

Execute requests are created using a more complex template, as shown bellow:

<wps:Execute service="WPS" version="1.0.0" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0
../wpsExecute_request.xsd" language="{{language}}">

<!-- template-version: 0.21 -->
<ows:Identifier>{{Identifier}}</ows:Identifier>
<wps:DataInputs>

{{#DataInputs}}
{{#is_literal}}

<wps:Input>
<ows:Identifier>{{identifier}}</ows:Identifier>
<wps:Data>

<wps:LiteralData{{#dataType}} dataType="{{dataType}}"{{/dataType}}>{{value}}</wps:LiteralData>
</wps:Data>

</wps:Input>
{{/is_literal}}
{{#is_bbox}}

<wps:Input>
<ows:Identifier>{{identifier}}</ows:Identifier>
<wps:Data>

<wps:BoundingBoxData ows:crs="{{crs}}" ows:dimensions="{{dimension}}">
<ows:LowerCorner>{{lowerCorner}}</ows:LowerCorner>
<ows:UpperCorner>{{upperCorner}}</ows:UpperCorner>

</wps:BoundingBoxData>
</wps:Data>

</wps:Input>
{{/is_bbox}}
{{#is_complex}}
{{#is_reference}}
{{#is_get}}

<wps:Input>
<ows:Identifier>{{identifier}}</ows:Identifier>
<wps:Reference xlink:href="{{href}}"{{#schema}} schema="{{shema}}"{{/schema}}{{#mimeType}} mimeType="{{mimeType}}"{{/mimeType}}{{#encoding}} encoding="{{encoding}}"{{/encoding}}/>

</wps:Input>
{{/is_get}}
{{#is_post}}

<wps:Input>
<ows:Identifier>{{identifier}}</ows:Identifier>
<wps:Reference xlink:href="{{href}}" method="{{method}}" {{#schema}} schema="{{shema}}"{{/schema}}{{#mimeType}} mimeType="{{mimeType}}"{{/mimeType}}{{#encoding}} encoding="{{encoding}}"{{/encoding}}>

{{#headers}}
<wps:Header key="{{key}}" value="{{value}}" />

{{/headers}}
<wps:Body>{{{value}}}</wps:Body>

</wps:Reference>
</wps:Input>

{{/is_post}}

84 Chapter 6. ZOO-Client

ZOO-Project Documentation, Release 1.8

{{/is_reference}}
{{^is_reference}}

<wps:Input>
<ows:Identifier>{{identifier}}</ows:Identifier>
<wps:Data>

<wps:ComplexData{{#schema}} schema="{{shema}}"{{/schema}}{{#mimeType}} mimeType="{{mimeType}}"{{/mimeType}}{{#encoding}} encoding="{{encoding}}"{{/encoding}}>{{#is_XML}}{{{value}}}{{/is_XML}}{{^is_XML}}<![CDATA[{{{value}}}]]>{{/is_XML}}</wps:ComplexData>
</wps:Data>

</wps:Input>
{{/is_reference}}
{{/is_complex}}
{{/DataInputs}}

</wps:DataInputs>
<wps:ResponseForm>

{{#RawDataOutput}}
{{#DataOutputs}}

<wps:RawDataOutput {{#mimeType}}mimeType="{{mimeType}}"{{/mimeType}}>
<ows:Identifier>{{identifier}}</ows:Identifier>

</wps:RawDataOutput>
{{/DataOutputs}}
{{/RawDataOutput}}
{{^RawDataOutput}}

<wps:ResponseDocument{{#storeExecuteResponse}} storeExecuteResponse="{{storeExecuteResponse}}"{{/storeExecuteResponse}}{{#lineage}} lineage="{{lineage}}"{{/lineage}}{{#status}} status="{{status}}"{{/status}}>
{{#DataOutputs}}
{{#is_literal}}

<wps:Output{{#dataType}} dataType="{{dataType}}"{{/dataType}}{{#uom}} uom="{{uom}}"{{/uom}}>
<ows:Identifier>{{identifier}}</ows:Identifier>

</wps:Output>
{{/is_literal}}
{{^is_literal}}

<wps:Output{{#asReference}} asReference="{{asReference}}"{{/asReference}}{{#schema}} schema="{{schema}}"{{/schema}}{{#mimeType}} mimeType="{{mimeType}}"{{/mimeType}}{{#encoding}} encoding="{{encoding}}"{{/encoding}}>
<ows:Identifier>{{identifier}}</ows:Identifier>

</wps:Output>
{{/is_literal}}
{{/DataOutputs}}

</wps:ResponseDocument>
{{/RawDataOutput}}

</wps:ResponseForm>
</wps:Execute>

6.2 Using ZOO-Client

This section will help you to get started using ZOO-Client.

6.2.1 Prerequisites

ZOO-Client is based on the following Javascript libraries

• jQuery (http://www.jquery.com)

• x2js (https://code.google.com/p/x2js6)

• Require.js (http://requirejs.org7)

6https://code.google.com/p/x2js/
7http://requirejs.org/

6.2. Using ZOO-Client 85

http://www.jquery.com
https://code.google.com/p/x2js/
http://requirejs.org/

ZOO-Project Documentation, Release 1.8

• Hogan.js (http://twitter.github.io/hogan.js)

• query-string (https://github.com/sindresorhus/query-string8)

Warning: Node.jsa is also required on your system for compiling ZOO-Client templates.

ahttp://nodejs.org/

6.2.2 Download

If you did not download the ZOO-Project source code already, please proceed to a svn checkout with the
following command:

svn checkout http://svn.zoo-project.org/svn/trunk/zoo-project/zoo-client

Warning: You do not necessarily need to install the ZOO-Project server for using ZOO-Client. The
corresponding svn directorya is needed only.

ahttp://zoo-project.org/trac/browser/trunk/zoo-project/zoo-client

6.2.3 Compiling ZOO-Client templates

In order to work with ZOO-Client, you will first need to compile the provided Mustache9 templates using
Node.js10. The ZOO-Client templates are located in the /zoo-project/zoo-client/lib/tpl directory
downloaded from svn.

• Install Node.js (see related documentation11.)

• Install Hogan, the JavaScript templating engine, using the following command:

sudo npm install hogan

• Use Hulk (Hogan’s command line utility) for compiling the tempaltes using the following command:

hulk zoo-client/lib/tpl/*mustache > \ zoo-client/lib/js/wps-client/payloads.js

Warning: Using different versions of Hogan to compile and to use in a web application may lead to
compatibility issue.

Everything is now ready to work with ZOO-Client. Read the next section for an example JavaScript applica-
tion.

6.2.4 Building ZOO-Client API documentation

You may also build the ZOO-Client API documentation using jsDoc12, with the following command:

npm install jsdoc
~/node_modules/.bin/jsdoc zoo-client/lib/js/wps-client/* -p

8https://github.com/sindresorhus/query-string/
9http://mustache.github.io/

10http://nodejs.org/
11https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
12http://usejsdoc.org/

86 Chapter 6. ZOO-Client

http://twitter.github.io/hogan.js
https://github.com/sindresorhus/query-string/
http://nodejs.org/
http://zoo-project.org/trac/browser/trunk/zoo-project/zoo-client
http://mustache.github.io/
http://nodejs.org/
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
http://usejsdoc.org/

ZOO-Project Documentation, Release 1.8

This will build HTML documentation in a new directory named /out in your working directory.

Note: Building the ZOO-Client API documentation is optional, please refer to the up-to-date ZOO-Client
API Documentation13 for the current API version.

6.3 Example application

This section gives a detailed example of ZOO-Client based JavaScript appliclation.

Note: For this example application, first setup a /zoo-client-demo directory accessible from your web
server at http://localhost/zoo-client-demo.

The following subdirectories must be created in the /zoo-client-demo directory:

assets
assets/js
assets/js/lib
assets/js/lib/hogan
assets/js/lib/jquery
assets/js/lib/query-string
assets/js/lib/xml2json
assets/js/lib/zoo
assets/tpl

You will need to copy your node_modules javascript files copied in the hogan and query-string directories.
First, you wil need to install query-string.

npm install query-string

Then you will copy query-string.js and hogan-3.0.2.js files in your zoo-client-demo web directory. Those files
are located in your ~/node_modules directory.

For other libraries, you will need to download them from their official web sites and uncompress them in
the corresponding directories.

6.3.1 Loading the modules from your web application

Before using the ZOO-Client, you will first have to include the javascript files from your web page. With
the use of requirejs you will need only one line in your HTML page to include everything at once. This line
will look like the following:

<script data-main="assets/js/first" src="assets/js/lib/require.js"></script>

In this example, we suppose that you have created a first.js file in the assets/js directory containing your main
application code. First, you define there the required JavaScript libraries and potentially their configuration,
then you can add any relevant code.

1 requirejs.config({
2 baseUrl: 'assets/js',
3 paths: {
4 jquery: 'lib/jquery/jquery-1.11.0.min',
5 hogan: 'lib/hogan/hogan-3.0.2',
6 xml2json: 'lib/xml2json/xml2json.min',

13http://www.zoo-project.org/jsDoc/index.html

6.3. Example application 87

http://www.zoo-project.org/jsDoc/index.html
http://www.zoo-project.org/jsDoc/index.html

ZOO-Project Documentation, Release 1.8

7 queryString: 'lib/query-string/query-string',
8 wpsPayloads: 'lib/zoo/payloads',
9 wpsPayload: 'lib/zoo/wps-payload',

10 utils: 'lib/zoo/utils',
11 zoo: 'lib/zoo/zoo',
12 domReady: 'lib/domReady',
13 app: 'first-app',
14 },
15 shim: {
16 wpsPayloads: {
17 deps: ['hogan'],
18 },
19 wpsPayload: {
20 deps: ['wpsPayloads'],
21 exports: 'wpsPayload',
22 },
23 hogan: {
24 exports: 'Hogan',
25 },
26 xml2json: {
27 exports: "X2JS",
28 },
29 queryString: {
30 exports: 'queryString',
31 },
32 },
33 });
34

35 requirejs.config({
36 config: {
37 app: {
38 url: '/cgi-bin/zoo_loader.cgi',
39 delay: 2000,
40 }
41 }
42 });
43

44 require(['domReady', 'app'], function(domReady, app) {
45 domReady(function() {
46 app.initialize();
47 });
48 });

On line 2, you define the url where your files are located on the web server, in assets/js. From line 3 to
14, you define the JavaScript files to be loaded. From line 15 to 21, you configure the dependencies and
exported symbols. From line 35 to 42, you configure your main application.

In this application, we use the domReady14 module to call the initialize function defined in the app module,
which is defined in the first-app.js file as defined on line 13.

1 define([
2 'module','zoo','wpsPayload'
3], function(module, ZooProcess, wpsPayload) {
4

5 var myZooObject = new ZooProcess({
6 url: module.config().url,
7 delay: module.config().delay,

14http://github.com/requirejs/domReady

88 Chapter 6. ZOO-Client

http://github.com/requirejs/domReady

ZOO-Project Documentation, Release 1.8

8 });
9

10 var initialize = function() {
11 self = this;
12 myZooObject.getCapabilities({
13 type: 'POST',
14 success: function(data){
15 console.log(data);
16 }
17 });
18

19 myZooObject.describeProcess({
20 type: 'POST',
21 identifier: "all",
22 success: function(data){
23 console.log(data);
24 }
25 });
26

27 myZooObject.execute({
28 identifier: "Buffer",
29 dataInputs: [{"identifier":"InputPolygon","href":"XXX","mimeType":"text/xml"}],
30 dataOutputs: [{"identifier":"Result","mimeType":"application/json","type":"raw"}],
31 type: 'POST',
32 success: function(data) {
33 console.log(data);
34 },
35 error: function(data){
36 console.log(data);
37 }
38 });
39 }
40

41 // Return public methods
42 return {
43 initialize: initialize
44 };
45

46 });

On line 5 you create a “global” ZooProcess instance named myZooObject, you set the url and delay to the
values defined in first.js on line 35. From line 10 to 40, you define a simple initialize function which will
invoke the getCapabilities (line 12 to 18), describeProcess (from line 20 to 26) and execute (from line 28 to
39) methods. For each you define a callback function which will simply display the resulting data in the
browser’s console.

6.3. Example application 89

ZOO-Project Documentation, Release 1.8

90 Chapter 6. ZOO-Client

CHAPTER

SEVEN

CONTRIBUTOR GUIDE

This is the ZOO-Project1 Contributor Guide. This document provides information and guidelines to any-
one willing to contribute to the ZOO-Project2 open source software project and help making it better.

7.1 How to contribute ?

Please consider the following simple rules if you would like to contribute to the ZOO-Project3 open source
software.

7.1.1 Community

Anybody is welcome to share and contribute ideas, code, documentation or any relevant resource. This
should be done according to the directives stated in the ZOO-Project Contributor Guide.

Governance

ZOO-Project4 activities are directed by the Project Steering Committee (PSC) and the software itself is being
developed, maintained and documented by an international community of users and developers (aka ZOO-
Tribe5).

Contributions are moderated and integrated in trunk at the discretion of the ZOO-Project6 PSC. Commit
access are usually granted to active contributors by vote from the PSC members.

Licensing

ZOO-Project7 source code is open source and made available under the MIT/X-118 license9. You must agree
to the terms of that same license when creating, submiting and releasing new source code.

1http://zoo-project.org
2http://zoo-project.org
3http://zoo-project.org
4http://zoo-project.org
5http://zoo-project.org/new/ZOO-Project/ZOO%20Tribe
6http://zoo-project.org
7http://zoo-project.org
8http://opensource.org/licenses/MITlicense
9http://zoo-project.org/trac/browser/trunk/zoo-project/LICENSE

91

http://zoo-project.org
http://zoo-project.org
http://zoo-project.org
http://zoo-project.org
http://zoo-project.org/new/ZOO-Project/ZOO%20Tribe
http://zoo-project.org/new/ZOO-Project/ZOO%20Tribe
http://zoo-project.org
http://zoo-project.org
http://opensource.org/licenses/MITlicense
http://zoo-project.org/trac/browser/trunk/zoo-project/LICENSE

ZOO-Project Documentation, Release 1.8

ZOO-Project10 documentation is open source and made available under the Creative Commons Attribution-
ShareAlike 4.0 International Public License11 . You must agree to the terms of that same license when
creating, submiting and releasing a new documentation file.

7.1.2 Available media

Discussions and contributions to ZOO-Project12 are encouraged using the following public media.

Mailing lists

Feel free to post any question, feedback, comment or idea to the general public mailing list. For project
managment or governance topics, please use the PSC list.

Name Description
zoo-discuss13 General mailing list for ZOO-Project users

and developers
zoo-psc14 Project Steering Committe mailing list

IRC

Join the #zoo-project channel on irc.freenode.net to discuss with the ZOO-Tribe at any time.

Tracker

Bug reports and code patches should be shared using the ZOO-Project15 bug tracking system, as specified
in the contribute-code section.

Wiki

Wiki pages can also be created by registered users. They can be used in order to describe any concept,
contribution and or action that benefits or is related to the project.

7.2 Contribute code

Anybody can take part to the ZOO-Project16 developement and is welcome to:

• Share new source code or correction

• Create tickets to report bugs

• Write a new feature request.

10http://zoo-project.org
11https://creativecommons.org/licenses/by-sa/4.0/legalcode
12http://zoo-project.org
13http://lists.osgeo.org/cgi-bin/mailman/listinfo/zoo-discuss
14http://lists.osgeo.org/cgi-bin/mailman/listinfo/zoo-psc
15http://zoo-project.org
16http://zoo-project.org

92 Chapter 7. Contributor Guide

http://zoo-project.org
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
http://zoo-project.org
http://lists.osgeo.org/cgi-bin/mailman/listinfo/zoo-discuss
http://lists.osgeo.org/cgi-bin/mailman/listinfo/zoo-psc
http://zoo-project.org
http://zoo-project.org

ZOO-Project Documentation, Release 1.8

7.2.1 Submit new code

For new comers

New source code or existing source code corrections (patches) should be submitted using the ZOO-Project
bug tracking system (ZOO-Trac17).

Create a new ticket18 in order to describe your code or patch and attach it to the ticket (attach all the files
required to use your code or patch). It will then be checked and discussed with the developers, and can
potentially be integrated and merged with the trunk.

For registered developers

ZOO-Project registered developers have direct svn access and can:

• Commit fixes, enhancement and new source directly to trunk

• Create and commit to a new branch of the svn

ZOO-Project registered developers must accept and respect the Committer guidelines when contributing
code.

7.2.2 Bug tracking

General information

Bug reports and wishes can be submitted using the ZOO-Trac19 . This requires you to setup a user account
(userid) using this section.

The following trackers are available:

• defects to report bugs and ‘bad’ features

• enhancement to describe feature wishes

• task to describe any different but relevant topic.

The following components are available:

• Developemnt platform to report bugs and ‘bad’ features

• ZOO-Kernel to report a bug or problem with the ZOO-Project WPS server

• ZOO-Services to report a bug or problem with the ZOO-Project WPS services

• ZOO-API to report a bug or problem with the ZOO-Project API

• ZOO-Client to report a bug or problem with the ZOO-Project Client

• Documentation to report a problem or suggest an enhancement to the documentation

17http://zoo-project.org/trac
18http://zoo-project.org/trac/newticket
19http://zoo-project.org/trac

7.2. Contribute code 93

http://zoo-project.org/trac
http://zoo-project.org/trac/newticket
http://zoo-project.org/trac

ZOO-Project Documentation, Release 1.8

Best practices

Please consider the following when submitting bugs or feature requests:

• Check if the bug is still persistent in svn trunk before reporting. If you use an older version, please
consider upgrading.

• Before reporting a bug, please search if it is yet unknown in the bug tracking system.

• Give an appropriate, starightforward and understandable title to your ticket using the Summary field

• Make sure the developers get all the needed information to recreate the bug using the Description field
(e.g. tell about your configuration and explain every step to reproduce the bug).

• Select at least a Type of tracker and a Component for your new ticket.

• Report only one single bug by ticket.

7.3 Contribute documentation

ZOO Documentation is a collaborative process managed by the ZOO developers. Anybody is welcome to
contribute to the ZOO-Project documentation. Please consider the following instructions before doing so.

7.3.1 General information

Heading syntaxe

Tere are various title heading used in the documentation, when you create a new document, you’re invited
to follow the following heading underline syntaxe:

• for Heading 1, use =,

• for Heading 2, use -,

• for Heading 3, use .,

• for Heading 4, use *,

• for Heading 5, use #.

For new comers

New users are encouraged to contribute documentation using the following ways:

• Download the ZOO-Project svn, edit the documentation files located /docs directory and share the
modifications through a new ticket set to ‘Documentation’ tracker

• Create a wiki page containg new or corrected documentation text, and create a new ticket to report
its creation.

The ZOO developers responsible for the documentation will then review the contributions to add them into
the official docs.

94 Chapter 7. Contributor Guide

ZOO-Project Documentation, Release 1.8

For registered developers

The current structure of the ZOO Project documentation process is for developers with SVN commit access
to maintain their documents in reStructuredText format, and therefore all documents live in the /docs
directory in SVN. The Sphinx20 documentation generator is used to convert the reStructuredText files to
html, and the live website is then updated on an hourly basis.

7.3.2 Installing and using Sphinx

On Linux

• Make sure you have the Python dev and setuptools packages installed. For example on Ubuntu:

sudo apt-get install python-dev
sudo apt-get install python-setuptools

• Install sphinx using easy_install:

sudo easy_install Sphinx==1.3.1

Note: Make sure you install Sphinx 1.3.1 or more recent.

• Checkout the /docs directory from SVN, such as:

svn checkout http://svn.zoo-project.org/svn/trunk zoo-project

• To process the docs, from the ZOO /docs directory, run:

make html

or

make latex

The HTML output will be written to the build/html sub-directory.

Note: If there are more than one translation, the above commands will automatically build all translations.

On Mac OS X ™

• Install sphinx using easy_install:

sudo easy_install-2.7 Sphinx==1.3.1

Note: Make sure you install Sphinx 1.3.1 or more recent.

• Install MacTex21 if you want to build pdfs

• Checkout the /docs directory from SVN, such as:

svn checkout http://svn.zoo-project.org/svn/trunk zoo-project

• To process the docs, from the ZOO /docs directory, run:

20http://sphinx.pocoo.org/
21http://www.tug.org/mactex/2009/

7.3. Contribute documentation 95

http://sphinx.pocoo.org/
http://www.tug.org/mactex/2009/

ZOO-Project Documentation, Release 1.8

make html

or

make latex

The HTML output will be written to the build/html sub-directory.

On Windows ™

• Install Python 2.X22

• Download setuptools23

• Make sure that the C:/Python2X/Scripts directory is your path

• Execute the following at commandline:

easy_install Sphinx==1.3.1

...you should see message: “Finished processing dependencies for Sphinx”

Note: Make sure you install Sphinx 1.3.1 or more recent. See note above.

• Install MiKTeX24 if you want to build pdfs

• Checkout the /docs directory from SVN, such as:

svn checkout http://svn.zoo-project.org/svn/trunk zoo-project

• Inside the /docs directory, execute:

make html

or

make latex

The HTML output will be written to the _build/html sub-directory.

reStructuredText Reference Guides

The following resources are considered as useful for editing and creating new ZOO-Project documentation
files.

• Docutils Quick reStructuredText25

• Docutils reStructuredText Directives26

• Sphinx’s reStructuredText Primer27

• search Sphinx’s mailing list28

22http://www.python.org/
23http://pypi.python.org/pypi/setuptools#windows
24http://miktex.org
25http://docutils.sourceforge.net/docs/user/rst/quickref.html
26http://docutils.sourceforge.net/docs/ref/rst/directives.html
27http://sphinx.pocoo.org/rest.html
28http://groups.google.com/group/sphinx-dev

96 Chapter 7. Contributor Guide

http://www.python.org/
http://pypi.python.org/pypi/setuptools#windows
http://miktex.org
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://docutils.sourceforge.net/docs/ref/rst/directives.html
http://sphinx.pocoo.org/rest.html
http://groups.google.com/group/sphinx-dev

ZOO-Project Documentation, Release 1.8

7.4 Committer guidelines

This section gathers information to the registered ZOO-Project developers.

7.4.1 Election to SVN Commit Access

Permission for SVN commit access shall be provided to new developers only if accepted by the ZOO-Project
Project Steering Commitee. A proposal should be written to the PSC for new committers and voted.

Removal of SVN commit access should be handled by the same process.

The new committer should have demonstrated commitment to ZOO-Project and knowledge of the ZOO-
Project source code and processes to the committee’s satisfaction, usually by reporting bugs, submitting
patches, and/or actively participating in the ZOO-Project mailing list(s).

The new committer should also be prepared to support any new feature or changes that he/she commits
to the ZOO-Project source tree in future releases, or to find someone to which to delegate responsibility for
them if he/she stops being available to support the portions of code that he/she is responsible for.

All committers should also be a member of the zoo-discuss mailing list so they can stay informed on poli-
cies, technical developments and release preparation.

New commiters are responsible for having read, and understood this document.

7.4.2 Committer Tracking

A list of all project committers will be kept in the main zoo-project directory (called COMMITTERS29) listing
for each SVN committer:

• Userid: the id that will appear in the SVN logs for this person.

• Full name: the users actual name.

• Email address: A current email address at which the committer can be reached. It may be altered in
normal ways to make it harder to auto-harvest.

7.4.3 SVN Administrator

One member of the Project Steering Committee will be designed the SVN Administrator. That person will
be responsible for giving SVN commit access to folks, updating the COMMITTERS file, and other SVN
related management. That person will need login access on the SVN server of course.

7.4.4 SVN Commit Practices

The following are considered good SVN commit practices for the ZOO-Project project.

• Use meaningful descriptions for SVN commit log entries.

• Add a bug reference like “(#1234)” at the end of SVN commit log entries when committing changes
related to a ticket in Trac. The ‘#’ character enables Trac to create a hyperlink from the changeset to
the mentionned ticket.

29http://zoo-project.org/trac/browser/trunk/zoo-project/COMMITTERS

7.4. Committer guidelines 97

http://zoo-project.org/trac/browser/trunk/zoo-project/COMMITTERS

ZOO-Project Documentation, Release 1.8

• After commiting changes related to a ticket in Trac, write the tree and revision in which it was fixed
in the ticket description. Such as “Fixed in trunk (r12345) and in branches/1.7 (r12346)”. The ‘r’
character enables Trac to create a hyperlink from the ticket to the changeset.

• Changes should not be committed in stable branches without a corresponding bug id. Any change
worth pushing into the stable version is worth a bug entry.

• Never commit new features to a stable branch without permission of the PSC or release manager.
Normally only fixes should go into stable branches.

• New features go in the main development trunk.

• Only bug fixes should be committed to the code during pre-release code freeze, without permission
from the PSC or release manager.

• Significant changes to the main development version should be discussed on the zoo-discuss list
before you make them, and larger changes will require a to be discussed and approved on zoo-psc list
by the PSC.

• Do not create new branches without the approval of the PSC. Release managers are assumed to have
permission to create a branch.

• All source code in SVN should be in Unix text format as opposed to DOS text mode.

• When committing new features or significant changes to existing source code, the committer should
take reasonable measures to insure that the source code continues to build and work on the most
commonly supported platforms (currently Linux and Windows), either by testing on those platforms
directly, running Buildbot tests, or by getting help from other developers working on those platforms.
If new files or library dependencies are added, then the configure.in, Makefile.in, Makefile.vc and
related documentations should be kept up to date.

7.4.5 Legal

Committers are the front line gatekeepers to keep the code base clear of improperly contributed code. It is
important to the ZOO-Project users, developers and the OSGeo foundation to avoid contributing any code
to the project without it being clearly licensed under the project license.

Generally speaking the key issues are that those providing code to be included in the repository understand
that the code will be released under the MIT/X license, and that the person providing the code has the right
to contribute the code. For the commiter themselves understanding about the license is hopefully clear. For
other contributors, the commiter should verify the understanding unless the commiter is very comfortable
that the contributor understands the license (for instance frequent contributors).

If the contribution was developed on behalf of an employer (on work time, as part of a work project, etc)
then it is important that an appropriate representative of the employer understand that the code will be
contributed under the MIT/X license. The arrangement should be cleared with an authorized supervi-
sor/manager, etc.

The code should be developed by the contributor, or the code should be from a source which can be right-
fully contributed such as from the public domain, or from an open source project under a compatible li-
cense.

All unusual situations need to be discussed and/or documented.

Committers should adhere to the following guidelines, and may be personally legally liable for improperly
contributing code to the source repository:

• Make sure the contributor (and possibly employer) is aware of the contribution terms.

98 Chapter 7. Contributor Guide

ZOO-Project Documentation, Release 1.8

• Code coming from a source other than the contributor (such as adapted from another project) should
be clearly marked as to the original source, copyright holders, license terms and so forth. This infor-
mation can be in the file headers, but should also be added to the project licensing file if not exactly
matching normal project licensing (zoo-project/zoo-kernel/LICENSE).

• Existing copyright headers and license text should never be stripped from a file. If a copyright holder
wishes to give up copyright they must do so in writing to the foundation before copyright messages
are removed. If license terms are changed it has to be by agreement (written in email is ok) of the
copyright holders.

• Code with licenses requiring credit, or disclosure to users should be added to /trunk/zoo-
project/zoo-kernel/LICENSE.

• When substantial contributions are added to a file (such as substantial patches) the au-
thor/contributor should be added to the list of copyright holders for the file.

• If there is uncertainty about whether a change it proper to contribute to the code base, please seek
more information from the project steering committee, or the foundation legal counsel.

7.5 Release Procedure

The ZOO-Project release procedure is commonly defined by the following rules:

• Any of the ZOO-Project Commiters can ask for a release by asking the ZOO-Project Project Steering
Commitee and pointing a release manager. This last will then vote for accepting both the manager and
the release procedure to happen.

• If not already created, create a wiki page (like this one30 using this scheme: Release/M.m.r/Notes),
summarizing changes from the previous release (extracted from the revision log31).

• That file should include new features, changed features, and deprecated features if any. Changes to
the official documentation should be specifically noted along with other items that will cause breaking
changes during upgrades.

• Read the documentation and remove outdated parts.

• Create release candidate as .zip and .tar.bz2 then add them on this page32 (by editing this wiki page33)

• Cut a release candidate once you think that everything is in order. Announce the release candidate for
review for at least 1 week. In this period of time, it is also appropriate for you to deploy in production
since you are asserting that it is stable and (significant) bug free. Publish a specific revision with this.

• If significant bugs are reported, fix and cut a new release candidate. If no major bugs, then announce
that the release candidate has officially been promoted to the official release (if you want, you can do
this with a motion and support of the PSC).

• Ensure that release exactly matches something in SVN. Tag and branch appropriately.

• Update documentation as needed.

• Announce on various email list and other locations (news_item@osgeo.org34, SlashGeo, etc)

30http://zoo-project.org/trac/wiki/Release/1.3.0/Notes
31http://zoo-project.org/trac/browser/trunk/zoo-project/HISTORY.txt
32http://zoo-project.org/new/Code/Download
33http://zoo-project.org/trac/wiki/ZooWebSite/2015/Code/Download
34news_item@osgeo.org

7.5. Release Procedure 99

http://zoo-project.org/trac/wiki/Release/1.3.0/Notes
http://zoo-project.org/trac/browser/trunk/zoo-project/HISTORY.txt
http://zoo-project.org/new/Code/Download
http://zoo-project.org/trac/wiki/ZooWebSite/2015/Code/Download
mailto:news_item@osgeo.org

ZOO-Project Documentation, Release 1.8

7.5.1 Creating an Official Release

Release versions lead to an update in documentation and standard tarballs. This is to help future adminis-
trators repeatably create releases.

• Double check that the pages from the ZOO-Project.org web site35 match the current version.

• Double check that the latest build file matches the current revisions number.

• If this is a new major release create a branch and a tag.

cd zoo-project-svn/
svn cp trunk branches/branch-1.6
svn cp trunk tags/rel-1.6.0

• If this is a major or minor relase, create a tag.

svn cp branches/branch-1.6 tags/rel-1.6.1

• Commit the tags or branches with the version numbers.

svn commit -m 'Created branch/tags for the X.Y.Z release'

• Create version archives

export VERSION=2.6.0
cd zoo-propject-svn
cp -r trunk zoo-project-$VERSION
cd zoo-project-$VERSION
rm -rf $(find ./ -name ".svn")
cd zoo-project/zoo-kernel
autoconf
In case you did not build ZOO-Kernel
cd ../../..
In case you built ZOO-Kernel, then remove the generated file from the archive
make clean
rm -f {Makefile,ZOOMakefile.opts}
cd ../../..
In case you built one or more ZOO-Services, then remove the generated file from the archive
rm $(find ./zoo-project-$VERSION/zoo-project/zoo-services -name "*zo")
Remove documentation from the archive
rm -rf ./zoo-project-$VERSION/{docs,workshop}
tar -cvjf ./zoo-project-$VERSION.tar.bz2 ./zoo-project-$VERSION
zip -r ./zoo-project-$VERSION.zip ./zoo-project-$VERSION
scp -P 1046 ./zoo-project-$VERSION.{zip,tar.bz2} zoo-project.org:/var/www/localhost/htdocs/dl/

• Update the Downloads page36 to add the latest release (by editing this wiki page37).

7.6 Contribute translation

7.6.1 Introduction

This chapter aims to explain how to help translating the internal ZOO-Kernel messages into another lan-
guage than English. Some languages are already enabled for translating and some are not. Please see
Request a new language if needed.

35http://zoo-project.org/
36http://zoo-project.org/new/Code/Download
37http://zoo-project.org/trac/wiki/ZooWebSite/2015/Code/Download

100 Chapter 7. Contributor Guide

http://zoo-project.org/
http://zoo-project.org/new/Code/Download
http://zoo-project.org/trac/wiki/ZooWebSite/2015/Code/Download

ZOO-Project Documentation, Release 1.8

This chapter describes how to add a new language, how to join a language group, and how to translate the
internal ZOO-Kernel messages.

7.6.2 What is Transifex for?

Transifex38 is a croudsourcing translation web application. It allows projects to let people easily translate
documentation, websites, and applications.

It offers a graphic interface for those of you who don’t like command line but also some features for those
who love them.

Transifex helps the translator to improve their translation with suggestions, glossary and proofreading
process.

7.6.3 Starting with Transifex

Subscribe to Transifex

You need to subscribe to Transifex before translating. Go to Transifex subscribing page39 and create a new
account.

Access the project

The project can be found here: ZOO-Project Dashboard40

Each project has a news page to send some information to you, so please, take some time to read them. You
can also send some messages to others to discuss on a topic.

Ask to join the Translator group

Click on the link to access the dashboard of the ZOO-Project project in Transifex (link above), find the
button Join team. You should now wait for the manager accept you in the group (given them time to read
your request and act in consequence).

7.6.4 Request a new language

Go to the ZOO-Project dashboard on Transifex (see link above) and click on ‘Request language’.

Creating a new language by the manager should not be too long, actually as long as to accept you in the
team.

7.6.5 Translate messages

Once you are a member of the Translator team, go on the ZOO-Project Dashboard you can translate and
click on the language you want to translate, then press the button ‘Translate’ and you can start translating
strings by using the online editor. Please refer to this documentation41 if you need details on how to use
this editor.

38https://www.transifex.com/signup/contributor/
39https://www.transifex.com/signup/contributor/
40https://www.transifex.com/organization/zoo-project/dashboard
41http://docs.transifex.com/tutorials/txeditor/

7.6. Contribute translation 101

https://www.transifex.com/signup/contributor/
https://www.transifex.com/signup/contributor/
https://www.transifex.com/organization/zoo-project/dashboard
http://docs.transifex.com/tutorials/txeditor/

ZOO-Project Documentation, Release 1.8

7.7 List of contributors

7.7.1 ZOO-Project founders

The ZOO-Project concept, architecture and source code implementation was initiated in 2008 by the follow-
ing individuals:

• Gérald FENOY (aka djay)

• Nicolas BOZON (aka nbozon)

• Venkatesh RAGHAVAN (aka venka)

7.7.2 ZOO-Project Project Steering Commitee

The ZOO Project Steering Comitee is responsible to manage the project which is maintained, improved, and
supported by a small but growing developer community. The PSC is composed of the following people (by
alphabetical order):

• Nicolas BOZON (GeoLabs SARL42), FR

• Maria Antonia BROVELLI (Politecnico di Milano43), IT

• Massimiliano CANNATA (SUPSI44), CH

• Gérald FENOY (GeoLabs45), FR (Chair)

• Hirofumi HAYASHI (AppTech46), JP

• Daniel KASTL (Georepublic47), DE

• Jeff McKENNA (Gateway Geomatics48), CA

• Markus NETELER (Fondazione Edmund Mach49), IT

• Venkatesh RAGHAVAN (Osaka City University50), JP

• Angelos TZOTSOS (National Technical University of Athens51), GR

7.7.3 ZOO-Project Commiters

The following individuals will be considered authorized ZOO-Project committers as long as they each
review the commiter guidelines, and agree to adhere to them. The ZOO-Project commiters are listed here
by alphabetical order.

• Nicolas BOZON (aka nbozon)

• Trevor CLARKE (aka tclarke)

• Luca DELUCCHI (aka lucadelu)
42http://geolabs.fr
43http://www.polimi.it
44http://www.ist.supsi.ch/
45http://www.geolabs.fr/
46http://www.apptec.co.jp/
47http://georepublic.de/en/
48http://www.gatewaygeomatics.com/
49http://gis.fem-environment.eu/
50http://www.osaka-cu.ac.jp/index-e.html
51http://users.ntua.gr/tzotsos/

102 Chapter 7. Contributor Guide

http://geolabs.fr
http://www.polimi.it
http://www.ist.supsi.ch/
http://www.geolabs.fr/
http://www.apptec.co.jp/
http://georepublic.de/en/
http://www.gatewaygeomatics.com/
http://gis.fem-environment.eu/
http://www.osaka-cu.ac.jp/index-e.html
http://users.ntua.gr/tzotsos/

ZOO-Project Documentation, Release 1.8

• René-Luc D’HONT (aka reluc)

• Gérald FENOY (aka djay) Admin

• Knut LANDMARK (aka knut)

• Jeff MCKENNA (aka jmckenna)

• Markus NETELER (aka neteler)

• Marco NEGRETTI (aka nmarco)

• David SAGGIORATO (aka david)

• Angelos TZOTSOS (aka kalxas)

7.7.4 Other contributors

The following individuals have also contributed to the ZOO-Project source code or documentation.

• Thomas GRATIER

• Guillaume SUEUR

• Daisuke YOSHIDA

7.7. List of contributors 103

	Introduction
	What is ZOO-Project ?
	ZOO-Project components
	Open Source

	ZOO-Project installation
	Prerequisites
	Download
	Installation on Unix/Linux
	Installation on Debian / Ubuntu
	Install on OpenSUSE
	Installation on CentOS
	Installation on Windows ™

	ZOO-Kernel
	What is ZOO-Kernel ?
	ZOO-Kernel configuration
	Optional MapServer support
	Optional Orfeo Toolbox support
	Optional SAGA GIS support
	Optional HPC support

	ZOO-Services
	What are ZOO-Services ?
	ZOO-Service configuration file
	Process profiles registry
	Create your own ZOO-Services
	Translation Support
	ZOO Status Service
	Debugging ZOO Services
	Available ZOO-Services

	ZOO-API
	What is ZOO-API ?
	Using ZOO-API
	ZOO-API Classes
	Examples

	ZOO-Client
	What is ZOO-Client ?
	Using ZOO-Client
	Example application

	Contributor Guide
	How to contribute ?
	Contribute code
	Contribute documentation
	Committer guidelines
	Release Procedure
	Contribute translation
	List of contributors

